
Toward the Efficient
Compilation of Fair Search

Marius Nita

marius@cs.pdx.edu

(joint with Andrew Tolmach)

1

Outline

� (Brief) FLP intro

� Fair vs unfair search

� Implementing fair search

� First-class stores

� Design constraints

� Data representation

� Garbage collection

� Results, conclusion

2

Functional Logic Programming

� One paradigm unifying functional and logic programming

� From the functional world (Curry syntax):
� (Higher-order) functions

s f g x = f x (g x)

� Algebraic datatypes, pattern matching

data T = B Bool T T | L

flatten L = []

flatten (B x l r) = flatten l ++ x:(flatten r)

� Haskell ⊂ Curry (or it can be)

3

Functional Logic Programming

� From the logic world:

� Logic variables, built-in search

flatten x where x free

instantiates x to L or (B) and looks for solutions

� Nondeterminism

coin = 0

coin = 1

(evaluating coin yields either 0 or 1,
nondeterministically – in theory)

4

Built-in Search

Back to our example:
data T = B Bool T T | L

flatten L = []

flatten (B x l r) = flatten l ++ x:(flatten r)

We load this program in Pakcs and run the following goal:
test> flatten X

Free variables in goal: X

Result: ([])

Bindings:

X=L ?

(Capital letters denote free variables in the top level.)

5

Built-in Search

In a nutshell: When a free variable X is demanded, e.g., our
operation (flatten X):

1. Find the set of values (constructors) that it can be
instantiated to, based on its type.

The type of X is T. Possible values are L and
(B X1 X2 X3), where Xis are free.

2. For each value v, instantiate X to v and compute (f X).

flatten L ⇒ [] (our solution!)

flatten (B X1 X2 X3) ⇒ flatten X2 ++ X1:(flatten X3)

The latter will spit out an infinite number of solutions.

6

Fair vs. Unfair Search

How do we find solutions algorithmically? On previous slide:

For each value v, instantiate X to v and compute
(flatten X).

Strategy A Instantiate X=L, compute (flatten X) until no
more computation can be done. Then instantiate
X=(B X1 X2 X3) and repeat.

Strategy B Spawn two parallel computations, one for X=L and
one for X=(B X1 X2 X3) and compute (flatten X) in each.

7

Unfair Search

Strategy A (depth-first search) is the norm. Popular FLP
implementations, including Pakcs and the Münster Curry
Compiler (MCC), search for solutions depth-first.

A well-known defect of depth-first search is that it is
incomplete. Most simply, when

f (B x r l) = undefined

f L = []

(f X) should yield the solution [] at some point. If we
search depth-first and pick the first branch before the
second, this never occurs.

8

Fair Search

Strategy B (breadth-first search) is complete. All solutions
that can be computed in a finite amount of steps will be
discovered in a finite amount of time.

� We compute all alternatives in (pseudo-)parallel.

� Each alternative reports its result when it is done
computing.

� If some alternatives diverge, the program will naturally
diverge. But not before reporting all computable
solutions.

9

Implementing Fair Search

Each search alternative computes independently from the
others. Therefore, some data involved in the computation
must be distinct for each alternative.

A High-Level Approach We are computing (flatten X):

1. Replicate the term n times, where n is the number of
possible values for X.

2. In each replica, substitute X for one of the values.

3. Proceed with computing all replicas in parallel.

10

Fair Search: Term Replication

(flatten X)

⇒

[

(flatten L)

(flatten (B X1 X2 X3))

]

⇒

[

[]

(flatten X2) ++X1 : (flatten X3)

]

⇒

[

(flatten L) ++X1 : (flatten X3)

(flatten (B X4 X5 X6)) ++X1 : (flatten X3)

]

11

Fair Search: Term Replication

Possible problem: duplicating large terms can be a big time
and space expense.

The situation can be improved by avoiding replication of
sub-terms which do not contain free variables.

E.g., (not X, reallyBigTerm) yields

(True, E1)

(False, E2)

If reallyBigTerm doesn’t contain free variables, E1 and E2

will point to the same object, which was obtained by
reducing reallyBigTerm once.

12

Fair Search: Store Replication

A Low-Level Approach

� We compile all functions to fixed machine code.

� We largely abandon notions of “term duplication” and
“reduction.” (Machine code can’t be duplicated anyway.)

� We introduce a concept of store: mapping from logic
variables to values. Each alternative has its own store
that is independent from all other stores.

� When the value of a free variable is demanded, we
duplicate the store instead of the term.

13

Fair Search: Store Replication

(flatten X)s≡{X7→Free}

⇒

[

(flatten X)s ′
≡s[X7→L]

(flatten X)s ′′
≡s[X7→(B X1 X2 X3),X1...X3 7→Free]

]

⇒

[

[]s ′

(flatten X2) ++X1 : (flatten X3)s ′′

]

⇒

[

(flatten X2) ++X1 : (flatten X3)s ′′[X2 7→L]

(flatten X2) ++X1 : (flatten X3)s ′′[X2 7→(B X4 X5 X6),X4...X6 7→Free]

]

14

First-Class Stores

Logic variable stores are first-class stores (FCS):

� Stores are mappings from store references to values

� Stores are objects that can be passed in and out of
functions, stored in variables, etc.

� Stores can be copied (or “checkpointed”)

� Store references can be dereferenced in any “valid”
store.

15

FCS: Interface

A C interface for our formulation of first-class stores:

typedef Fcs ...

typedef SRef ...

Fcs fcs_new(void);

Fcs fcs_checkpoint(Fcs);

SRef fcs_allocate(Fcs, Value);

void fcs_update(Fcs, SRef, Value);

Value fcs_deref(Fcs, SRef);

Important: If a reference exists in a store s, it also exists in
any store s2 = fcs checkpoint(s), for as long as s2 is live.

16

FCS in FLP

� We use stores to map logic variables to values.

� A store reference corresponds to a logic variable.

� The code manipulates only store references and is
store-agnostic. (This will come in handy!)

� The fcs checkpoint operation is used whenever stores
must be duplicated. (Whenever we spawn parallel
search alternatives.)

� Intuitively, two search alternatives running the same
code (dereferencing the same references) will have
different outcomes if their stores are different.

17

Goal of This Work

We want an efficient compiler for FLC that employs fair
search via store replication. Pieces involved:

� A compiler from a high level FLP to machine code

� An efficient data representation and implementation for
first-class stores

� A runtime system composed of
� concurrency primitives
� a garbage collector that correctly and efficiently

collects stores

This work addresses items in blue.
18

Data Representation

� One crucial observation: For a store value to be live, it
must be reachable via a reference and a store.

� If it is only reachable through a reference, it is garbage.

� If it is only reachable through a store, it is garbage.

� Intuitively, we need both a store and a reference in order
to pull out the value and use it. Otherwise it’s out of our
reach.

Consequence: Some values may be garbage but still
reachable!

19

Data Representation

Consider the following situation:

f c s _u pd a t e (h 1 , p ,v 1);. . .< F A I L>
h 1

f c s _u pd a t e (h 2 , p ,v 2);. . .< F A I L>
h 2

f c s _ u pd a t e (h 3 , p ,v 3);. . .< F A I L>
h 3

c h e c k po i n t
c h e c k po i n t

c h e c k po i n t
If p remains live as the computation proceeds, we must
make sure that v1, v2, etc., do not.

20

FCS: A Simple Approach

We could represent first-class stores as contiguous arrays
and references as integer offsets into stores.

Pros: Fast dereferencing.

Cons: Checkpointing is inefficient, especially space-wise.

Serious cons: Proper collection is intractable! When a
reference becomes garbage, we need to kill off its
corresponding values in all the stores that it can be
dereferenced in.

21

FCS: Getting Trickier

We represent first-class stores as integer lists and
references as lists of possible values.

� A reference is a list of (t, v) pairs, where t is a tag that
uniquely identifies a store.

� A store s is a list t1, t2, . . . , tn of tags, where t1 is the
(unique) tag of s, t2 is the tag uniquely identifying its
“checkpoint parent,” and so on.

This trick exploits an important invariant in FLC: after a s is
duplicated in the process of spawning two or more search
alternatives, s becomes unreachable!

22

FCS: Linked Lists

1 40
3 2

4 b 0 a2 d 1 e4 f
r 0r 1r 2 3 c

s 0s 1
s 3 s 2 s 4

Pros: Makes good use of space and fixes our GC problem.
(We will see how in a few slides.)

Cons: Dereferencing is slow. A value may be looked up in
several stores before it is found.

23

FCS: Hash Tables

The linked list approach is inadequate due to very slow
dereferencing. Replacing linked lists with hash tables in the
reference representation produced significantly better
results.

 0

 1

 2

 3

 4

 5

fibo 27nat 400 400perms 7ndtest 7

R
el

at
iv

e
sl

ow
do

w
n

hash open addressing
hash chaining (prime size)

hash chaining (^2 size)
linked list

stores as arrays

 0.6

 0.8

 1

 1.2

 1.4

fibo 27nat 400 400perms 7ndtest 7

R
el

at
iv

e
to

ta
l a

llo
ca

tio
n

hash open addressing
hash chaining (prime size)

hash chaining (^2 size)
linked list

stores as arrays

24

GC: General Guidelines

� Most data die young. Approx. 80% of the data is
garbage by the time a collection should happen.

� Allocation must be very fast. The allocation routine
holds the highest call percentage in the runtime.

� Frequent allocation ⇒ frequent collections. Since most
data die young, we would like to avoid collecting “too
early.”

25

Generational GC

We decided on a generational copy collector, following
Appel’s well known model [Appel ’89].

� Implicitly compacting, so allocation happens in a
contiguous free space. I.e., allocation is fast.

� Generational means collection is divided in two phases:

� Minor: collect a little data at a time, frequently.

� Major: collect the entire heap, much less frequently.

� Gives data more time to die.

26

GC: Mechanics

o l d e r n e w e r

o l d e r n e w e r

o l d e r n e w e r

o l d e r n e w e r

o l d e ro l d e r
o l d e r n e w e r

(a)
(b)

(c)
(d)

(e)
(f)

(g)

n e w e rG CM O V E
G C

G C

27

GC: Liveness Adjustment

� We represent references as hash tables from store tags
t to elements (p, v), where p is a pointer to the store
object uniquely identified by t.

� Before doing a full collection, we first forward all live
stores to the “to” space.

� During collection, when scanning live references, for
each (p, v), we can quickly determine if p is garbage: p

is in the “from” space and lacks a forwarding pointer.

� If p is garbage, we remove (p, v) from the table and fail
to scan it.

28

Some Numbers

ndtest 7 perms 7 nat 400 400 fibo 27

none 1.51 1.53 2.15 4.75

coll 1.98 2.31 5.93 13.90

augm 2.21 2.63 1.87 10.81

Micro-benchmark speed comparisons (seconds):

� none: no collector at all

� coll: generational copy collector

� augm: generational copy collector with adjusted notion
of liveness

29

Some Numbers

ndtest 7 perms 7 nat 400 400 fibo 27

coll 0.30/0.54 0.69/0.48 3.54/0.51 5.25/1.19

augm 1.22/0.02 0.82/0.48 0.02/0.35 4.30/0.09

Time spent in the collector (seconds), accompanied by time
spent in the dereference operation.

ndtest 7 perms 7 nat 400 400 fibo 27

coll 75.83 74.77 76.33 73.12

augm 21.07 22.89 7.43 71.54

Percentage of live data (calculated at majors).

30

Future Work

� Speed everything up!

� We are working to improve the GC code that does the
explicit unlinking, as it is central to GC performance.

� Strictness analysis to avoid thunking and to unbox
integers.

� Mode analysis/inference to eliminate superfluous
checks. E.g., if a variable is known to be bound, avoid
unnecessary store dereferencing operations and
unnecessary concurrency.

� Serious comparisons with Pakcs, MCC, FLVM.

31

Related Work

Most notably:

� The Münster Curry Compiler: a native code (unfair)
compiler for Curry.
http://danae.uni-muenster.de/~lux/curry/

� The FLVM: a (fair) virtual machine for FLP.
http://redstar.cs.pdx.edu/~antoy/flp/vm/

� See ICFP’04 paper by Tolmach et al. for details on an
interpreter closely related to FLC.

32

The End

Full paper is at http://www.cs.pdx.edu/~marius/.

33

