
A Framework for Understanding 
the Portability of C Types

Marius Nita

May 16, 2007

Advised by Dan Grossman



The Ultimate Portability Question

“Will it run over there?”



I tackled a slightly smaller problem...

“Will it run over there?”
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The Problem

• C definition leaves type layout unspecified.

• Different platforms make different choices.

• The same type may work as intended on one 
platform but cause unexpected behavior on another.



For Example,

struct A { int  a; long b; };
struct B { long x; long y; };

struct A *pa = ...;
...
struct B *pb = (struct B*)pa;
...
memcpy(x, y, pb->x);



For Example,
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How can you tell if your types are portable?



Programmer’s Burden

• Understand the language definition.

• Understand each platform’s choices.

• Manually isolate problems.

• Cross-compile, test on target platform.

• Very raw tool support:

• Special compiler flags.

• Lint-like technology
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Tool Overview

• A set of layout assumptions are extracted from a C program.

• Each assumption is checked against the host and target(s).

• If the assumption is false, a warning is reported.

• A platform is a description of how a particular compiler lays 
out types on a particular machine.
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Key Ingredients

• We want to reason about how a platform lays out types in 
memory.

• We need an explicit notion of layouts.

• We need a way to represent platforms.

• We need a way to represent, extract, and check the layout 
assumptions a C program makes.



Memory Layout Language

Layout ::= byte
            | pad
            | ptrn(Layout)
            | Layout Layout

(Byte of data)
(Byte of padding)
(Pointer to n-byte aligned data)
(Sequence)



Memory Layout Language: Example

ptr1(byte byte byte)

ptr4(byte byte byte pad)

Pointer to:

ARM:

struct Pixel { char r,g,b; }

x86:



Representing Platforms

• Capture the subset of a platform that deals with type layout.

• Sizes and alignments of types.

• Offsets of struct fields.

• Algorithm for recursively laying out structs.



A Platform is a Type Compiler

Platform.ptrsize        :     Int
Platform.alignof        :     Type → Int
Platform.offsetof      :     FieldName → Int

Platform.xtype           :     Type → Layout

To represent a real-world platform, faithfully 
implement these four functions.



Layout Subtyping

• When is the pointer-cast (struct B*)pa safe?

• When the layout of struct A* can be treated as if it were 
the layout of struct B*.

• Captured by a notion of layout subtyping.

struct A *pa = ...;
...
struct B *pb = (struct B*)pa;



Layout Subtyping: Key Rule

If n is a multiple of m, then

ptrn(Layout1 Layout2)  ≤  ptrm(Layout1)

A pointer can be treated as a pointer to a shorter prefix.



Representing Layout Assumptions

• A layout assumption is a statement demanding that 
platforms behave a certain way.

• E.g. “alignment of int must be 8”

• Unspecified type uses generate assumptions.

• Ultimately represented as formulas in a first-order logic.



Extracting Assumptions

“If
   host_layout(S*) ≤ host_layout(D*),
then
   target_layout(S*) ≤ target_layout(D*).”

(D*)e

If the type of e is S*, then for expression

the corresponding assumption is



Checking Assumptions

• Assumptions are checked in the context of a host platform 
(Host) and a target platform (Target).

• Resolve symbols and see if the assumption is true/false.

• Resolving symbols, examples:

target_layout(T) Target.xtype(T)

host_layout(T) Host.xtype(T)
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Implementation

• Implemented on top of George Necula’s CIL.

• Platforms are directly implemented in Caml.

• Records of functions.

• Simple “type compilers.”

• The instrumenter is a C compiler.

• make CC=/the/instrumenter

• Runtime system is a small C library.



Runtime System

• Responsible for recording run-time layout assumptions.

• Disk usage/IO overhead potentially issues.

• E.g. assumption being registered in a tight loop.

• Runtime buffers assumptions and discards duplicates.

• Program slowdown is negligible.
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Spread

• A high-performance messaging service for distributed apps.

• Library + 5 executables.

• Instrumented all of it and ran it on basic inputs.

• Tool caught one 64-bit portability bug.

• 32-bit x86 host platform.

• 64-bit “LP-64” target platform.

• 47 unique layout assumptions generated.

• One false positive, one bug.



Broken Layout Assumption

struct scat_element { char *buf; int    len; };
struct iovec        { char *buf; size_t len; };
...
struct scat_element *elem;
...
iov = (struct iovec*)elem;
...
//treat iov->len as length of iov->buf
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Conclusions

• Developed an approach and tool to discover type layout 
portability issues in C code.

• Can be used to find real bugs

• by checking against platform descriptions modeling real 
concrete platforms.

• Can be used to understand portability boundaries

• by checking against many “weird” platform descriptions 
that may not exist but are legal within the C standard.



Future Work

• Static analysis.

• Dynamic analysis has many advantages.

• But hard to apply to arbitrary C code (e.g. kernels).

• Strong Evaluation.



Questions?

http://www.cs.washington.edu/homes/marius/quals.pdf

http://www.cs.washington.edu/homes/marius/quals.pdf
http://www.cs.washington.edu/homes/marius/quals.pdf

