
A Framework for Understanding
the Portability of C Types

Marius Nita

May 16, 2007

Advised by Dan Grossman

The Ultimate Portability Question

“Will it run over there?”

I tackled a slightly smaller problem...

“Will it run over there?”

Outline

• Motivation & Background

• Key Ingredients

• Implementation

• Case Study

• Conclusions & Future Work

The Problem

• C definition leaves type layout unspecified.

• Different platforms make different choices.

• The same type may work as intended on one
platform but cause unexpected behavior on another.

For Example,

struct A { int a; long b; };
struct B { long x; long y; };

struct A *pa = ...;
...
struct B *pb = (struct B*)pa;
...
memcpy(x, y, pb->x);

For Example,

aon 32-bit x86:

struct A { int a; long b; };
struct B { long x; long y; };

struct A *pa = ...;
...
struct B *pb = (struct B*)pa;
...
memcpy(x, y, pb->x);

b

x y

For Example,

aon 32-bit x86:

struct A { int a; long b; };
struct B { long x; long y; };

struct A *pa = ...;
...
struct B *pb = (struct B*)pa;
...
memcpy(x, y, pb->x);

b

x y

ba

yx

on LP-64:

padding

How can you tell if your types are portable?

Programmer’s Burden

• Understand the language definition.

• Understand each platform’s choices.

• Manually isolate problems.

• Cross-compile, test on target platform.

• Very raw tool support:

• Special compiler flags.

• Lint-like technology

This Work: Envisioned Scenario

gcc/x86

gcc/SPARCgcc/ALPHA

gcc/ARM icc/x86

gcc/x86

gcc/SPARCgcc/ALPHA

gcc/ARM icc/x86

Program

This Work: Envisioned Scenario

gcc/x86

gcc/SPARCgcc/ALPHA

gcc/ARM icc/x86

Program

This Work: Envisioned Scenario

gcc/x86

gcc/SPARCgcc/ALPHA

gcc/ARM icc/x86

host

target target

targettarget

Program

This Work: Envisioned Scenario

Tool Overview

• A set of layout assumptions are extracted from a C program.

• Each assumption is checked against the host and target(s).

• If the assumption is false, a warning is reported.

• A platform is a description of how a particular compiler lays
out types on a particular machine.

Implementation Architecture

.c .c .c .c

Instrument

.c .c .c .c

Implementation Architecture

Instrument

.c .c .c .c

Compile

Implementation Architecture

Instrument

.c .c .c .c

Compile

Run RTS

Implementation Architecture

Layout Assumptions

Instrument

.c .c .c .c

Compile

Run RTS

Implementation Architecture

Assumption Checking
Platforms

(host, targets)

Layout Assumptions

Instrument

.c .c .c .c

Compile

Assumption Checking
Platforms

(host, targets)

Run

Layout Assumptions

RTS

Warnings

Implementation Architecture

Outline

• Motivation & Background

• Key Ingredients

• Memory Layout Language

• Representing Platforms

• Layout Subtyping

• Representing Layout Assumptions

• Implementation

• Case Study

• Conclusions & Future Work

Key Ingredients

• We want to reason about how a platform lays out types in
memory.

• We need an explicit notion of layouts.

• We need a way to represent platforms.

• We need a way to represent, extract, and check the layout
assumptions a C program makes.

Memory Layout Language

Layout ::= byte
 | pad
 | ptrn(Layout)
 | Layout Layout

(Byte of data)
(Byte of padding)
(Pointer to n-byte aligned data)
(Sequence)

Memory Layout Language: Example

ptr1(byte byte byte)

ptr4(byte byte byte pad)

Pointer to:

ARM:

struct Pixel { char r,g,b; }

x86:

Representing Platforms

• Capture the subset of a platform that deals with type layout.

• Sizes and alignments of types.

• Offsets of struct fields.

• Algorithm for recursively laying out structs.

A Platform is a Type Compiler

Platform.ptrsize : Int
Platform.alignof : Type → Int
Platform.offsetof : FieldName → Int

Platform.xtype : Type → Layout

To represent a real-world platform, faithfully
implement these four functions.

Layout Subtyping

• When is the pointer-cast (struct B*)pa safe?

• When the layout of struct A* can be treated as if it were
the layout of struct B*.

• Captured by a notion of layout subtyping.

struct A *pa = ...;
...
struct B *pb = (struct B*)pa;

Layout Subtyping: Key Rule

If n is a multiple of m, then

ptrn(Layout1 Layout2) ≤ ptrm(Layout1)

A pointer can be treated as a pointer to a shorter prefix.

Representing Layout Assumptions

• A layout assumption is a statement demanding that
platforms behave a certain way.

• E.g. “alignment of int must be 8”

• Unspecified type uses generate assumptions.

• Ultimately represented as formulas in a first-order logic.

Extracting Assumptions

“If
 host_layout(S*) ≤ host_layout(D*),
then
 target_layout(S*) ≤ target_layout(D*).”

(D*)e

If the type of e is S*, then for expression

the corresponding assumption is

Checking Assumptions

• Assumptions are checked in the context of a host platform
(Host) and a target platform (Target).

• Resolve symbols and see if the assumption is true/false.

• Resolving symbols, examples:

target_layout(T) Target.xtype(T)

host_layout(T) Host.xtype(T)

Outline

• Motivation & Background

• Key Ingredients

• Implementation

• Case Study

• Conclusions & Future Work

Implementation

• Implemented on top of George Necula’s CIL.

• Platforms are directly implemented in Caml.

• Records of functions.

• Simple “type compilers.”

• The instrumenter is a C compiler.

• make CC=/the/instrumenter

• Runtime system is a small C library.

Runtime System

• Responsible for recording run-time layout assumptions.

• Disk usage/IO overhead potentially issues.

• E.g. assumption being registered in a tight loop.

• Runtime buffers assumptions and discards duplicates.

• Program slowdown is negligible.

Outline

• Motivation & Background

• Key Ingredients

• Implementation

• Case Study

• Conclusions & Future Work

Spread

• A high-performance messaging service for distributed apps.

• Library + 5 executables.

• Instrumented all of it and ran it on basic inputs.

• Tool caught one 64-bit portability bug.

• 32-bit x86 host platform.

• 64-bit “LP-64” target platform.

• 47 unique layout assumptions generated.

• One false positive, one bug.

Broken Layout Assumption

struct scat_element { char *buf; int len; };
struct iovec { char *buf; size_t len; };
...
struct scat_element *elem;
...
iov = (struct iovec*)elem;
...
//treat iov->len as length of iov->buf

struct scat_element { char *buf; int len; };
struct iovec { char *buf; size_t len; };
...
struct scat_element *elem;
...
iov = (struct iovec*)elem;
...
//treat iov->len as length of iov->buf

Broken Layout Assumption

struct scat_element { char *buf; int len; };
struct iovec { char *buf; size_t len; };

buf

buf

scat_element

iovec

scat_element

iovec

len

buf len

len

buf len

iov = (struct iovec*)elem;

Broken Layout Assumption

struct scat_element { char *buf; int len; };
struct iovec { char *buf; size_t len; };

iov = (struct iovec*)elem;

Broken Layout Assumption

struct scat_element { char *buf; int len; };
struct iovec { char *buf; size_t len; };

iov = (struct iovec*)elem;

host_layout(scat_element*) ≤ host_layout(iovec*)
⇒ target_layout(scat_element*) ≤ target_layout(iovec*))

Broken Layout Assumption

struct scat_element { char *buf; int len; };
struct iovec { char *buf; size_t len; };

host_layout(scat_element*) ≤ host_layout(iovec*)
⇒ target_layout(scat_element*) ≤ target_layout(iovec*))

iov = (struct iovec*)elem;

ptr4(ptr1(byte) byte4) ≤ ptr4(ptr1(byte) byte4)
⇒ ptr8(ptr1(byte) byte4 pad4) ≤ ptr8(ptr1(byte) byte8)

Broken Layout Assumption

struct scat_element { char *buf; int len; };
struct iovec { char *buf; size_t len; };

iov = (struct iovec*)elem;

True

False

host_layout(scat_element*) ≤ host_layout(iovec*)
⇒ target_layout(scat_element*) ≤ target_layout(iovec*))

ptr4(ptr1(byte) byte4) ≤ ptr4(ptr1(byte) byte4)
⇒ ptr8(ptr1(byte) byte4 pad4) ≤ ptr8(ptr1(byte) byte8)

Broken Layout Assumption

Outline

• Motivation & Background

• Key Ingredients

• Implementation

• Case Study

• Conclusions & Future Work

Conclusions

• Developed an approach and tool to discover type layout
portability issues in C code.

• Can be used to find real bugs

• by checking against platform descriptions modeling real
concrete platforms.

• Can be used to understand portability boundaries

• by checking against many “weird” platform descriptions
that may not exist but are legal within the C standard.

Future Work

• Static analysis.

• Dynamic analysis has many advantages.

• But hard to apply to arbitrary C code (e.g. kernels).

• Strong Evaluation.

Questions?

http://www.cs.washington.edu/homes/marius/quals.pdf

http://www.cs.washington.edu/homes/marius/quals.pdf
http://www.cs.washington.edu/homes/marius/quals.pdf

