
Qualifying Exam Research Report, May 2007

A Framework for Understanding The Portability of C Types

Marius Nita
University of Washington

marius@cs.washington.edu

Abstract
The C standard does not specify the memory layouts of types, open-
ing the door for portability problems that arise from discrepancies
in how various platforms choose to represent types in memory. I re-
port on the design and implementation of a framework that provides
automated help for finding and understanding these discrepancies.
A dynamic analysis gathers memory layout constraints on types.
An offline analysis checks the truth of these constraints against
two abstract platform descriptions. The host description models the
platform on which the program has been developed, tested, and as-
sumed to work as intended. The target description models the plat-
form on which the program is to be (perhaps hypothetically) ported.
A warning is issued when a type may be used in a way that violates
its associated layout constraints on the target platform but not on
the host.

I envision the framework being used in two key ways: to find
type-portability bugs in C programs, by checking the program’s
constraints against platform descriptions that model concrete tar-
get platforms of interest, and to understand the type-portability of
programs, by checking constraints against many possibly unrealis-
tic descriptions and observing the platform features that cause the
constraints to become false. This process helps programmers dis-
cover and understand portability boundaries: what problematic as-
sumptions the code makes, the locations where these assumptions
arise, and consequently the kinds of platforms on which the pro-
gram behaves as intended.

1. Introduction
Previous efforts on assigning formal semantics to C and C-like lan-
guages have ignored the issue that C is, by definition [25], platform-
dependent (where “platform” is taken to mean the C compiler plus
its target architecture). The implementor of the compiler is free
to choose how to represent features that are left unspecified by
the language definition, and the programmer is capable of writ-
ing programs that make assumptions about platform idiosyncrasies
and therefore work as intended only when compiled with particu-
lar compilers. Previous work has either tacitly assumed a particu-
lar platform, has completely avoided modeling platform-dependent
behavior, or has classified implementation-dependent expressions
as meaningless [32]. The chief drawback of these formulations is
that they do not help us reason about C code in practice, where
these assumptions are made on purpose. At a practical level, this
means that there is no sound foundation from which to build analy-
ses that separate programs making incorrect assumptions from ones
that do not.

In previous work [31], we developed a theoretical model for
C-like languages that takes into account the notion of platform de-
pendency by parameterizing the semantics with an explicit plat-
form. The work presented in this paper leverages those results in
the design and implementation of a tool that allows reasoning about
the portability of C type declarations across platforms. For exam-

ple, the in-memory representation of data of type struct T{char
x;int y;double z;} depends on the sizes and alignments of int
and double, the alignment of structs, and the algorithm for recur-
sively laying out structs. All these features are left unspecified by
the C language definition and each C compiler may make differ-
ent decisions, typically depending on the features of its underlying
machine.

The notion of portability addressed by the present work is at the
level of types and memory safety. It may classify a dependency as
“bad” on a platform if it may lead to a memory safety violation. For
example, a program may run as intended on one platform but fail
with an alignment fault on another due to an incorrect assumption
about the latter platform’s type layout policy and memory fetching
abilities. This notion of portability does not capture dependencies
that go beyond memory safety. For example, if a program prints
“0xaabbccdd” on one platform and “0xddccbbaa” on another due
to a difference in endianness, but is memory-safe on both, our
system will not necessarily issue a warning. Similarly, if the target
platform is missing a needed header file or a system call, our
system will not necessarily help. This is due first to our focus
on unspecified “holes” in the C language, and second due to the
difficulty of handling full equivalence-portability (in the sense that
two programs evaluate the same on two platforms) because of
hard problems like modeling overflow and floating-point roundoff
behavior. We believe that our basic framework can be extended in
both of these directions with enough effort. Work on equivalence-
portability is currently underway.

2. Background
One of the key promises of high-level languages such as Java [8]
and Scheme [13], is that they are portable: they aim to guaran-
tee that programs behave the same on all architectures for which
respective interpreters or compilers exist. This is achieved by disal-
lowing language implementations from choosing how to represent
particular features: the sizes of types, endianness, overflow behav-
ior, floating-point roundoff behavior, evaluation order of function
arguments, are all implemented such that they behave the same on
all platforms. This flavor of “enforced” portability disallows pro-
grammers from discovering features of the underlying architecture
and resolutely rules out the class of programs that use this function-
ality. As a consequence, many system-level programs, such as oper-
ating system kernels, device drivers, runtime systems, and even im-
plementations of high-level portable languages, are written in low-
level, unchecked, unportable languages like C. Portable languages
themselves recognize the need for this functionality and provide
foreign function interfaces (FFI): ways to write C code with which
a high-level program can communicate.

C, on the other hand, is semi-portable, in the sense that portable
programs can be written, but so can wholly unportable ones, or
ones that work as intended on a known set of C implementations
and their architectures, but not necessarily on others. The C lan-

guage specification [25] delegates crucial decisions to the language
implementor for reasons of efficiency and control. The implemen-
tor is free to choose the sizes and alignments of types, the order
of evaluation for function arguments, and the order in which bytes
are stored in memory, among others. Typically, these choices re-
flect features of the underlying architecture, though this mustn’t
be the case. To write a semi-portable program in C, a programmer
must understand the C specification, which features of the language
are left up to the implementor, and how the target implementations
handle these unspecified features.

At the time of this writing, to the best knowledge of the author,
transitioning from portable to platform-specific code is an all-or-
nothing endeavor. If a program has been developed and tested in
Java or Scheme, and the programmer comes to a point where full
portability is too strong and wishes to make a decision based on
a feature of the underlying architecture, he must resort to the FFI
and write the code in C. Besides his knowledge, reading the code,
ad-hoc testing, and some very weak tool support (discussed in Sec-
tion 8), the programmer has no other means to increase his confi-
dence that this code is as portable as intended and no less. Worse,
there exists no support for developing code with portability in mind.
Verifying that code is portable, to the extent possible, involves di-
rect access to all the target software and architectures. Finally, there
exists no sophisticated tool support for porting low-level software
to new platforms. Once again, programmers must rely on knowl-
edge of the spec, knowledge of the language implementation, and
testing.

The scarcity of development tools for portability does not im-
ply an absence of a need for such tools. The problem of writing
portable code in C is well-known and well-documented. Query-
ing Amazon.com for related books yields many relevant results,
e.g. [24]. Typically, such books contain recipes for writing portable
code and a distilled version of the unportable subset of the C speci-
fication. For example, readers will be instructed to not rely on how
the compiler lays out structures in memory and to make sparing use
of the sizeof operator. Evidence of concern (and widespread mis-
understanding of the C specification) on the part of developers is
abundant on mailing lists [2, 1, 3, 11, 6], web sites dedicated to doc-
umenting common problems [10, 9], and papers describing expe-
rience with portability problems [36]. One well-documented [16],
high-impact set of portability issues occurred in the mid- to late-
90s, when a large set of software packages were identified to run in-
correctly on the ARM architecture, and subsequently ported. Most
of these issues were due to the ARM processors’ limited ability to
access data on non-4-byte boundaries. The programs in question
assumed that data could be accessed at smaller boundaries. The
existence of such literature serves as evidence that little to no ade-
quate automated solutions exist, and its ubiquity confirms that the
problem is of widespread interest.

The work presented in this paper is a serious attempt at provid-
ing support for detecting portability problems in and understanding
the portability of C programs. I build on our previous work [31] to
describe a practically-motivated model for portability, and then de-
scribe the implementation of a tool that can detect a class of porta-
bility problems described below.

2.1 Key idea
I define a “platform” to mean an oracle that knows the compiler’s
policy for laying out types in memory. The platform includes the
sizes and alignments of types, the offsets of struct fields, and the al-
gorithm for recursively laying out nested structs. Consequently, the
notion of “portability” that I consider is concerned with differences
in the layouts of types on different platforms. These differences can
lead to undesired effects, some of which are drastic: a pointer cast

1 struct S { void *buf; int len; };
2 struct D { void *buf; size t len; };

3 struct S ss[100];
4 struct D *ds = (struct D*)ss;

5 //treat ds[N].len as the length of ds[N].buf

Figure 1. Example buggy code

may be fine on the Gcc/X86 platform, but can lead to an unaligned
fetch and even a computer crash on Gcc/ARM.

This type-layout portability focus leads to a key idea: We can
define a language for describing memory layouts, and then view
platforms as translators from C types to memory layouts. Given a
C type and two platforms, we can translate the type on each plat-
form and look for problematic differences among the two resulting
memory layouts. These differences may be sources of portability
bugs.

2.2 Outline of the approach
The basic technique assumes a scenario where a program has been
developed, tested, and debugged on one platform (called the host),
and the developer is now interested in porting the program to a new
platform (called the target). Given a C program, we can extract a
set of constraints about the layout compatibility of types. Roughly,
these constraints express the conditions under which the layouts of
types on the target don’t cause problems that don’t already exist on
the host. The constraints can then be checked in the context of the
host and the target and a warning is issued for each failed constraint,
along with a code location where the problem occurred. Section 5
discusses the actual implementation in detail.

Figure 1 shows a piece of code with a portability bug in it.
On systems where sizeof(int) == sizeof(size t), this code
works as intended. On 64-bit platforms on which sizeof(int)
== 4 and sizeof(size t) == 8 (because size t is a type alias
for long), this code does not work as intended. On such a 64-bit
platform, the type struct S is laid out as an eight-byte block (for
buf), followed by a four-byte block (for len), followed by four
bytes of padding. The type struct D is laid out as two back-to-
back eight-byte blocks. Treating the array ss as an array of struct
D is always a bug on big-endian 64-bit systems and a bug on 64-bit
little-endian systems if the pad bytes on the layout of struct S are
not all-zero.

Our approach proceeds by generating a constraint on line 4 stat-
ing that the layout of ss must be compatible with the layout of
an array of struct D. Given a 32-bit platform description for the
host and a 64-bit one for the target, an analysis obtains the layouts
of struct S[] and struct D[] on the host and then on the tar-
get. The layouts are then passed to a layout subsumption algorithm
that determines whether the former layout can be accessed through
a type with the latter layout. The algorithm returns false and issues
a warning, pointing the programmer to the offending line 4. Plat-
form descriptions are software implementations of their concrete
counterparts. They are easy to implement because we only model a
small subset of a platform, namely its policy for laying out types in
memory.

The rest of the paper is organized as follows. The next two
sections give an abstract overview of the system’s key ingredients.
Section 5 discusses the implementation. Section 6 describes two
case studies of running the tool on real-world software. Section 7
expands on the implementation discussion and details limitations
of the approach. Section 8 describes related work and Section 9
concludes.

PTR
α1 = α2 × i

P ; δ ` ptrα1
(σ1σ2) ≤ ptrα2

(σ1)

UNROLL
P.xtype δ (δ ν) = σ

P ; δ ` ptrα(ν) ≤ ptrα(σ)

ROLL
P.xtype δ (δ ν) = σ

P ; δ ` ptrα(σ) ≤ ptrα(ν)

PAD
size P σ = i

P ; δ ` σ ≤ pad[i]

ADD

P ; δ ` pad[i]pad[j] ≤ pad[i + j]

Figure 2. Layout subsumption (P ; δ ` σ1 ≤ σ2), omitting standard rules

3. System Overview
This section elaborates the key ideas underlying the constraint
system. I begin by presenting a language for describing platform-
independent memory layouts, followed by platform descriptions. I
then describe a notion of physical subtyping for memory layouts,
which will later be instrumental in checking the portability of
pointer casts. Finally, I discuss the constraint language and how
constraints are checked.

3.1 A language for memory layouts
The concept of memory layout is pervasive in informal discussion
about the C language. For example, the statements “the size of long
on 64-bit SPARC is eight bytes” and “ARM pads structures up
to the nearest four-byte boundary” make reference to a notion of
memory layout including features like padding, alignment, and the
amount of space data occupies. These features are made explicit in
the following language:

σ ::= byte | pad[i] | ptrα(σ) | ptrα(ν)
ν ∈ type names

i, α ∈ N

σ denotes an atomic layout unit and σ denotes a sequence of such
units. byte represents a byte of data, pad[i] is i bytes of padding,
and ptrα(σ) represents a pointer to an α-aligned memory layout
σ. ptrα(ν) is the same, except it is a pointer to a named type with
name ν. Pointers to named types are necessary to model C-style
recursive types: a struct can refer to itself only through a pointer
to its own name.

As an example, consider the type struct{short x;}*. On
x86 using the Gcc compiler with no special command-line flags,
its layout is ptr2(byte byte). Using Gcc on an ARM platform,
the layout is ptr4(byte byte pad[2]). Due to the ARM’s limited
support for fetching data on non-4-byte boundaries, Gcc 4-byte
aligns all structs and inserts trailing padding accordingly. To make
precise this notion of type layout on a particular platform, we need
a way to talk about platforms.

3.2 Platform descriptions
When looking to understand the memory layout of a type on a
platform, we are typically only interested in a small subset of that
platform’s features, such as the sizes and alignments of base types
and the algorithm for recursively laying out nested structs. This
type-level abstracted representation is captured by the following
signature:

ptrsize : N
alignof : δ → τ → N
offsetof : δ → f → N

xtype : δ → τ → σ

δ ∈ ν → τ
τ ∈ C types
f ∈ field names

The ptrsize component gives the size of pointers. For simplicity,
we choose not to support multiple pointer sizes, as in systems with
“near” and “far” pointers. In current practice, most platforms have
a consistent pointer size.

The rest of the components are parameterized by a mapping
from names to C types (δ), which is necessary to resolve names
inside compound types. Given a set of declarations, alignof takes
a C type to its alignment in memory. offsetof resolves offsets
of struct fields, assuming uniqueness of field names.1 The xtype
function is the most interesting of the bunch, as it encodes the
policy for laying out C types in memory. It is essentially a “type
compiler” targeting the layout language σ.

A platform description is then defined as an implementation
of this signature: a record of four functions. If x86 and sparc
are descriptions modeling their concrete counterparts, we ex-
pect (x86 .xtype δ τ) to yield a different memory layout than
(sparc.xtype δ τ) in general.

Worthy of note is the omission of a sizeof component, which
exists as a platform-dependent operator in C. sizeof is not nec-
essary and can be recovered from the existing signature. To take
the size of a C type on a platform P , we translate it to its mem-
ory layout σ on P and then calculate the size of σ with the aid the
following function:

size P σ =

8><>:
1 if σ = byte

i if σ = pad[i]

P.ptrsize if σ ∈ {ptrα(ν), ptrα(σ)}

3.3 Layout subsumption
It is common practice in C programming to use the memory layout
of a type as if it were the layout of another type. For example, a
pointer to struct T{int x;int y;} can be cast to a pointer to
struct U{int x;}. After the cast, all reads and writes through U
affect exactly the “int x;” prefix of T’s layout, which is memory-
safe. Using our layout language, we can define a subsumption
relation that makes precise this notion of layout compatibility.

Figure 2 shows the layout subsumption relation as a set of
inference rules. The relation P ; δ ` σ1 ≤ σ2 says that given a
platform P and a set of declaration δ, the layout σ1 can be treated
as if it were layout σ2. The key rule is PTR, which determines
when a pointer to a layout can be treated as a pointer to a different
layout. The rule allows “dropping the suffix” under the pointer,
thus capturing the programming paradigm discussed in the previous
paragraph. Another important rule, PAD, states that any sequence
can be treated as a sequence of padding of the same length. Since
pad bytes can’t be directly written to or read from, this is always
safe. The ADD rule says that two adjoining padding sequences can
be intuitively seen as one contiguous pad sequence. The UNROLL

and ROLL rules are administrative, invoked whenever a pointer to a
name is encountered. Standard rules for reflexivity and transitivity
are omitted.

1 Uniqueness is easily enforced, renaming if necessary.

Notice that the PTR rule requires the alignment on the left to be a
multiple of (or possibly equal to) the alignment on the right. This in
effect encodes subsumption on alignments, which permits a larger
layout subsumption relation than if these alignments were required
to be equal. For example, it is always safe to treat a pointer to a
4-byte aligned value as if it were a pointer to a 2-byte aligned or
unaligned value, which a limited PTR rule would disallow.

3.4 Constraint language
With memory layouts and platform descriptions in hand, we can
express and check memory layout constraints. A constraint is a
logical formula whose truth can be evaluated only in the context
of a platform. Thus, a constraint can be viewed as a filter that splits
the space of all platforms into those that make it true and those
that make it false. In the next section we will craft constraints that
we can extract from C programs, such that if a platform makes
a constraint false, we can relate it to a possible type-portability
bug (a layout incompatibility leading to a safety violation) on that
platform; and if it makes it true, we can be confident that there is
no safety violation.

We formulate the constraint language as a standard first-order
theory, with universal and existential quantification, where quanti-
fied variables cannot range over predicates or functions. We aug-
ment the base theory with a number of custom function symbols
and corresponding sorts. The new sorts correspond to the syntactic
classes introduced in previous sections: N, τ, f, σ. The new func-
tion symbols are as follows:

h ptrsize, t ptrsize : N
h alignof, t alignof : τ → N

h offsetof, t offsetof : f → N
h xtype, t xtype : τ → σ

h sizeof, t sizeof : τ → N
h subtype, t subtype : σ → σ → {true, false}

Functions prefixed by h intuitively refer to the host platform and
those prefixed by t refer to the target. The first eight symbols cor-
respond directly to the features of a platform description. h sizeof
and t sizeof calculate the size of a type on the host and target,
respectively. h subtype and t subtype demand that the first ar-
gument is layout-compatible to the second.

The constraint language can be used to express rich relation-
ships between the host’s and the target’s type layout policies. As a
simple example, to demand that host pointers are equal in size to
target pointers, we can simply write (h ptrsize = t ptrsize).
If we want to ensure that the host and the target lay out types iden-
tically, we write ∀τ.h xtype(τ) = t xtype(τ). More elaborate
examples will be discussed in the next section.

The truth of first-order formulas that are not tautologies can be
evaluated only in the context of a model. For example, a formula
f(1) ∧ g(2) is meaningless unless we can appeal to an model that
gives meaning to f and g. In our context, the model is a triple
(Ph, Pt, δ), where Ph describes the the host platform, Pt the target,
and δ is a set of C type declarations. Given such a model, we can
determine the truth of any formula written in the first-order theory
described above. Applications of our custom function symbols are
resolved as follows (showing only the host symbols):

Function Interpretation under (Ph, Pt, δ)
h ptrsize Ph.ptrsize
h alignof τ Ph.alignof δ τ
h sizeof τ

Pn
i=1 size Ph σi

(where Ph.xtype δ τ = σ1 . . . σn)
h offsetof f Ph.offsetof δ f
h xtype τ Ph.xtype δ τ
h subtype σ1 σ2 Ph; δ ` σ1 ≤ σ2

The target symbols are resolved in the same manner, using Pt

instead of Ph. Typical first-order formulas are resolved in the usual
way. For example, letting C range over formulas, C1 ∧ C2 is true
when C1 is true and C2 is true. Formulas quantified by variables
that range over types or their translations are resolved by appealing
to δ. For example, a formula ∀τ.C is true when for all types τ ′ that
are base types or are in the range of δ, C with τ substituted for τ ′

is true.
Assuming that the platforms are well-behaved and implement

total functions, that layout subsumption is decidable, and that for-
mulas over the natural numbers use only addition, the constraint
language presented so far is Presburger arithmetic [21, 33], which
is known to admit a decision procedure in general. Though I have
not formally proved that subsumption is decidable, I have imple-
mented an algorithm and am confident in its correctness.

4. Constraints from C Programs
I now leverage the toolset presented in the previous section to show
a set of interesting type-portability constraints that can be extracted
from C programs. I assume the existence of a run-time type (RTT)
analysis that assigns to each expression the type that it may have
at runtime. Such an analysis is needed because we are interested
in discovering layout incompatibilities that may occur at run-time,
and since C’s type system allows arbitrary pointer casts, the static
type of an expression is at best a weak indicator of what its type
may be at run-time.

Figure 3 shows the list of constraints currently supported by the
system, assuming a run-time type analysis RTT(-). Constraint (1)
and (2) are identical, and extracted from occurrences of sizeof
operators. The latter refers to expression forms sizeof(e), in
which case the size of e’s type is always statically known, so the
RTT result wouldn’t help. They evaluate to false if the type passed
to sizeof (or the type of the expression passed to sizeof, in
the latter case) has trailing padding on one platform but not on
the other. It is a common mistake to assume that a struct will be
aligned according the alignment of its maximally aligned field.
Some platforms (e.g. Gcc on ARM) align structs to a boundary
that can be greater than that of any of its fields, which can result in
unanticipated trailing padding.

Constraint (3) is extracted from pointer-to-pointer casts and ex-
presses that if the two types involved in the cast are compatible
on the host platform, then they must be compatible on the tar-
get. The constraint makes the reasonable assumption that the pro-
grammer intended that the types involved in the cast be layout-
compatible, and so that layout compatibility should be preserved
on the target. Constraint (4) is similar to (3) but encodes suffix-cast.
For example, if e has type struct{char x;int y;}*, the casts
(int*)&e->y and (struct{int z;}*)&e->y are legal suffix-
casts on many platforms. The constraint says that if a suffix cast
is legal on the host, then it must be legal on the target. gcd(−,−)
is the greatest common divisor function. If a piece of data is n-byte
aligned, then data starting at an offset of m bytes from its beginning
is gcd(n, m)-byte aligned.

5. Implementation
I have implemented a tool that puts to work the ideas presented
in the previous two sections. Given a preprocessed C program, a
dynamic analysis (implemented as an instrumentation phase on top
of CIL [29] and a runtime system) is used to gather constraints.
An offline constraint analysis (roughly a way to evaluate first-
order formulas mechanically, along with an implementation of the
layout subsumption algorithm) inputs the constraints and outputs a
list of warnings and code locations regarding failed constraints. As
described in Section 3.4, the truth of a constraint can be determined

Expression RTT analysis Generated constraint
(1) sizeof(τ) ∃σh1, . . . , σhn, σt1, . . . , σtm.
(2) sizeof(e : τ) (h xtype(τ) = σh1 . . . σhn

∧ t xtype(τ) = σt1 . . . σtm

∧ ∃i.σhn = pad[i] ⇒ ∃j.σtm = pad[j]
∧ ∃i.σtm = pad[i] ⇒ ∃j.σhn = pad[j])

(3) (τ∗)e RTT(e) = τ ′∗ h subtype(h xtype(τ ′∗), h xtype(τ∗))
⇒ t subtype(t xtype(τ ′∗), t xtype(τ∗))

(4) (τ∗)&e ->f RTT(e) = τ ′∗ ∃σ1, σ2, α, σ′
1, σ

′
2, α

′.
(h xtype(τ ′∗) = ptrα(σ1σ2)
∧ h offsetof(f) = h sizeof(σ1)
∧ h subtype(ptrgcd(α,h offsetof(f))(σ2), h xtype(τ∗)))
⇒

(t xtype(τ ′∗) = ptrα′(σ′
1σ

′
2)

∧ t offsetof(f) = t sizeof(σ′
1)

∧ t subtype(ptrgcd(α′,t offsetof(f))(σ
′
2), t xtype(τ∗)))

Figure 3. Currently supported portability constraints. The first column shows the expression from which the constraint is extracted. The
“RTT Analysis” column shows the result of an analysis RTT(-) that determines the run-time type of an expression. A conservative RTT(-)
may return many possible types, in which case we generate a constraint for each type.

only in the context of a model that includes a host and target
platform and a set of type declarations. In the implementation, the
set of type declarations are extracted from the input program and
the host and target platforms are drawn from a platform “database”
that contains many platform descriptions. The descriptions have
been written by me as records of OCaml functions implementing
roughly the signature described in Section 3.2. Adding descriptions
is easy, as new descriptions can be built by extending old ones.

The implementation is unsound and incomplete: it can yield
both false positives and false negatives (per run). Unsoundness is
in part due to an assumption that all the fields of all structs are
read/written, which mustn’t be the case in general. E.g., if the
code in Figure 1 never uses the len field to bound access to the
corresponding buffer, there is no bug. Per-run incompleteness is
because the tool can be used on as little as one file. A set of
instrumented files can be linked with other plain C files, so all
the runtime information gathered from the program refers to only
the instrumented subset. If bugs exist in uninstrumented parts of
a runtime trace, they won’t be discovered. I view the ability to
perform partial instrumentation as a feature.

In the rest of this section I give an overview of the tool’s main
components: the instrumentation phase, the runtime system, the
constraint analysis, and the platform description database.

5.1 Instrumentation
The instrumenter takes a preprocessed C program and outputs a
version of the program that records runtime constraint informa-
tion on the side. To represent types at run-time, it uses a 1-1 map-
ping between types and integers, calculated during instrumentation.
Since many files in a program may share the same types, and thus
must use the same type numbers, the mapping is dumped to disk
after a file is instrumented, and is loaded and updated when an-
other file (in the same program) is instrumented. The instrumen-
tation consists of inserting into the program calls into a custom C
library, against which the program will be eventually linked. The
library maintains an internal data structure mapping addresses to
their types. The interface includes calls for registering the type
of an address (reg ptr, reg addrof, reg array), for for-
getting the type of an address (unreg), for registering a pointer

cast (reg cast), and for registering the run-time occurrence of a
sizeof instruction (reg sizeof).

Supposing N (−) is the unique mapping assigning integers to
types, Figure 4 gives an overview of how code is instrumented:

1. We instrument all dynamic allocation sites to insert the allo-
cated pointer into the type mapping. We assume malloc-style
allocators where the argument contains the size of the memory
chunk to be allocated, in bytes. In addition to the address and the
type, we pass into the runtime the size of the type (tmp 0) and
the number of bytes requested (tmp 1). This allows the run-
time to determine when an array is being allocated, by checking
if the requested size is a multiple of the type’s.

2. We instrument local and global declarations for variables whose
addresses are taken anywhere in the program, to handle pointer
casts such as (T*)&x. For local variables, we instruct the run-
time to remove the mapping for &x when control reaches the
end of the block.

3. We instrument C array declarations, since arrays in C behave
like pointers and can participate in pointer casts. We unregister
local arrays at the end of the block, as above.

4. We instrument all pointer cast sites by adding a call to pass
into the runtime the source pointer and the destination type.
The runtime can then determine the actual cast by looking
up the type associated with the source pointer in its internal
mapping. Note that after the cast, x contains the address to
which e evaluates, so x contains the source address, though it
may misleadingly look like the target.

5. We instrument all occurrences of sizeof(T), requesting that
the runtime records the type T. Note that in sizeof(e), the
size of e’s type is statically known. No run-time type lookup is
performed.

6. We instrument all deallocation sites by inserting a call instruct-
ing the runtime to remove the deallocated pointer from the type
map.

Once every file in the program is instrumented, all the files are
linked against the custom runtime system, which implements all
the custom calls in the instrumented code.

Original code Instrumented code
(1) x = (T*)malloc(e); __tmp_0 = sizeof(T);

__tmp_1 = e;
x = (T*)malloc(__tmp_1);
__reg_ptr(x, N(T*), __tmp_0, __tmp_1);

(2) {... T x; ...} { ... T x;
__reg_addrof(&x, N(T*));
...
__unreg(&x); }

(3) {... T x[C]; ...} { ... T x[C];
__reg_array(x, N(T[]), C);
...
__unreg(x); }

(4) x = (T*)e; x = (T*)e;
__reg_cast(x, N(T*));

(5) ... sizeof(e) ...; ... sizeof(e) ...;
// T is e’s statically known type
__reg_sizeof(T);

... sizeof(T) ...; ... sizeof(T) ...;
__reg_sizeof(T);

(6) free(x); free(x);
__unreg(x);

Figure 4. Instrumentation overview. N (−) is a function assigning a unique number to each type.

5.2 Runtime system
The runtime system is a C library whose chief responsibility is to
keep track of runtime constraint facts and make them available
to the later analysis stage. A constraint fact is a type number for
sizeof constraints and pairs of type numbers for pointer cast
constraints.

To keep track of pointer cast facts, the runtime maintains a
precise mapping from pointers to their run-time types. The run-
time type of a pointer is decided once and for all at allocation time,
when the instrumented code invokes reg ptr, reg array, or
reg addrof. Though at run-time the program will be able to

view a pointer at a different type, the true type of the pointer
(and hence that true memory layout it points to) does not change
through execution, except in one case: the pointer is freed and
then returned by a subsequent call to malloc at a different type.
I.e., malloc may reuse an address once it’s back on its free list.

The runtime has powerful support for non-atomic types such
as arrays and (arbitrarily nested) structs. If we look up an address
that points to an element in the middle of an array, which was
never explicitly entered into the mapping, the look-up will still
succeed and return the array element type. Likewise for pointers
inside structs. This is achieved by using an interval tree. Upon
allocating an array or a struct, the runtime records a mapping from
the corresponding pointer to an interval whose lower bound is the
pointer itself and whose upper bound is the pointer plus the size
of the array/struct. When an interval lookup succeeds, the runtime
resolves the type of the pointer by looking up the type of the base
and performing the necessary offset calculations.

Eventually, the runtime system needs to dump constraint facts to
disk for subsequent analysis. Because run-time facts may be regis-
tered very frequently, dumping them to disk as they occur may use
an unacceptable amount of disk space and slow the instrumented

program significantly due to I/O overhead. The runtime buffers a
preset number of constraints (currently set to 1000) before dump-
ing them. Upon constraint registration, if a constraint exists in the
buffer already, it is ignored. A simple hashing scheme is used to
check for duplicates in amortized constant time. Currently, the run-
time dumps the whole buffer to disk when it fills up. Another pos-
sibility is to dump only a small (possibly randomly selected) subset
of the buffer, to reduce possibly large stall times.

Finally, not shown in Figure 4, runtime calls take as additional
arguments the location of the line of the code being instrumented,
in the form of a file name and a line number. This information is
recorded in the output file for every pointer cast and sizeof fact
and used by the constraint analysis to link failed constraints to the
offending code.

5.3 Constraint analysis
Given a list of run-time cast and sizeof facts produced by run-
ning an instrumented program, and descriptions for the host and
target platforms, an offline analysis generates the corresponding
constraints and checks their validity. The analysis is implemented
in OCaml and uses CIL to process C types. Type numbers are re-
solved back into types using the offline map generated by the in-
strumenter.

Given a sizeof occurrence, the analysis generates a corre-
sponding constraint as shown in entries (1) and (2) of Figure 3.
Given a pointer cast, it generates a constraint as shown in entries
(3) and (4) of the same figure. These constraints are then checked
against the host and target descriptions and the list of type declara-
tions generated during instrumentation.

The t subtype and h subtype constraints appeal to the sub-
sumption relation, as discussed in Section 3.3. Part of the analysis
is an algorithm deciding inclusion in the relation: given two lay-

outs, a platform and a set of declarations, it returns true if the latter
subsumes the former and false otherwise.

The layout compatibility relation defines “upcast” (forgetting
suffix under pointer, subsuming to pad bytes, etc.) but does not
handle pointer casts in the other direction, for example a cast from
char* to a pointer to struct T{char x;int y;}. This type of
downcast is typical in some programs, networking software in
particular. For example, a char buffer is read off the wire but
the programmer knows it represents a struct T, so he performs
the cast and subsequently treats the buffer as a pointer to struct
T. Downcasts are typically ignored by the analysis, since their
corresponding constraints are generally false on both the host and
the target. In some cases, however, a useful warning can be issued.
Before ruling out a downcast as illegal, the constraint checker first
verifies that if the cast’s alignments are compatible on the host,
they are also compatible on the target, and warns if they are not.
This special case helps in finding alignment-related problems in
software that performs the type of cast described above. Though the
char buffer may indeed contain data that is layout-compatible to a
struct T, if the buffer is unaligned and the struct is, an alignment
error could occur when accessing the data through struct T.

The rest of the analysis appeals to the individual platform de-
scriptions to resolve symbols and check constraints.

5.4 Platform descriptions
Platform descriptions are records of OCaml functions, roughly im-
plementing the signature described in Section 3.2. The central com-
ponent of a platform description is the implementation of the xtype
function, which takes a C type to its memory layout on a particu-
lar platform. A typical xtype implementation (e.g. one describing
Gcc on x86 without compilation flags) appeals to the alignof and
sizeof components to lay out types and insert padding accord-
ingly. Struct types are laid out by recursively laying out the compo-
nents and concatenating the results.

The current set of platform descriptions have been implemented
by me by hand. To increase my confidence that the code is cor-
rect, I’ve devised a way to test platform descriptions against their
concrete counterparts. Given a set of type declarations, a tool gen-
erates a program that, for each type, prints its size and in the case
of structs, the name and offset of each field. This information is
loaded and compared to what xtype and offsetof (which is im-
plemented in terms of xtype) return for the same types and fields.
Using this approach, I found and fixed an important bug in the Gcc-
x86 platform description.

New platforms can be easily added by subclassing current plat-
forms. Since most platforms respect the layouts of atomic types
when laying out structs, adding a new platform typically means
subclassing an existing base platform and overriding some infor-
mation regarding atomic types, without changing the basic layout
algorithm. Currently, all platforms subclass a base platform (which
consists of 150 lines of OCaml counting whitespace and comments)
and are typically less than 10 lines of code.

6. Case Studies
As a preliminary evaluation of the tool, I’ve applied it to two C
programs. Spread [14] is a high-performance fault-resilient mes-
saging service, intended to be used as a general-purpose messaging
bus for distributed systems. The Python interpreter [12] is the ref-
erence implementation of Python, a widely-used general purpose
scripting language. I chose these two applications because Spread
contains a real portability bug and Python contains a good example
of semi-portable code: it breaks on platforms that make slightly un-
usual decisions when laying out types. I was aware of both of these
issues before the tool discovered them.

6.1 Experience with Spread
I instrumented the full Spread program set (a library and five exe-
cutables) and exercised it in a number of simple ways. Essentially,
I started the server, connected a few clients to it, and repeatedly
sent messages between the clients. The runtime recorded 47 unique
constraint facts. Of these, two were reported as possible problems.
One was a real portability bug and the other was a false positive: a
failed sizeof constraint in a memory initialization routine, where
trailing pad bytes aren’t an issue.

The real bug (a version of the bug shown in Figure 1) is due to a
hidden assumption that sizeof(int) is equal to sizeof(size t),
which isn’t necessarily the case on some platforms. Spread defines
the following type:

struct scat element { char *buf; int len; };
It then creates an array of scat element and performs a cast from
this array to pointer to struct iovec, subsequently manipulating
the array as if it were a struct iovec. The latter is a C library
type, typically defined as follows:

struct iovec { char *buf; size t len; };
On some 64-bit platforms, so-called “LP-64” platforms, integers
are kept as four bytes long, but longs and pointers are eight bytes
long. The type size t is normally a type alias for long.

When the analysis is performed with a 32-bit host and an LP-64
target, the pointer cast is deemed safe on the host but fails on the
target, violating constraint (3) in Figure 3. Letting byten mean a
sequence of n bytes, the host layouts of both types are equal to:

ptr4(ptr1(byte)byte4)

Both int and size t were translated to byte4, since they are both
four bytes long and equally aligned. Clearly, a layout subsumes
itself, so the cast is safe. On the target, however, the translations
are as follows:

scat element iovec

ptr8(ptr1(byte)byte4pad[4]) ptr8(ptr1(byte)byte8)

The layout on the left is not subsumed by the one on the right: the
subsumption relation does not allow pad bytes to be treated as data.

Viewing scat element’s layout through iovec is clearly not
a bug on 32-bit platforms. It can be a real bug on little-endian LP-
64 platforms, and it is always a real bug on big-endian LP-64 plat-
forms. On little-endian LP-64 platforms, it is not a bug if the trailing
pad bytes in scat element’s translation are all set to 0. Since the
low-order bits of the two len fields line up correctly, viewing the
layout byte4pad[4] through either int or size t yields the same
number. Platforms are free to store garbage data in pad bytes, how-
ever. On big-endian LP-64 platforms, the low-order bits of the two
len fields no longer line up, so whether pad bytes are set to 0 is ir-
relevant. After the cast, the low-order bits of scat element’s len
field will be in the high-order half of iovec’s len field, so viewing
the same layout through int and size t will yield different values.
Viewing it through size t yields a very large number, leading to
out-of-bounds buffer accesses. An example of a big-endian LP-64
platform is Gcc on the 64-bit SPARC architecture.

This bug was reported on the Spread mailing list [11] but it does
not appear to have been fixed in subsequent versions, possibly due
to low demand from LP-64 users.

6.2 Experience with Python
I instrumented and analyzed Python’s struct code: a dynamically-
loaded module that implements marshalling of Python objects to
and from strings. Since the type portability analysis tool can operate
on as little as one file, I instrumented only the relevant C code. A
minor hand-modification to Python’s main function was needed,

to insert calls to initialize and destroy the tool runtime. During my
experiments, the runtime recorded 24 unique constraint facts. When
run on these facts, the constraint analysis reports one warning and
no false positives.

The warning is a sizeof constraint violation, issued in the con-
text of a usual 32-bit host platform and an unusual target platform
that models a 32-bit ARM but decides to leave the short type un-
aligned. The Python marshalling code uses a number of macros
to decide the alignment of primitive types. The macro intended to
compute the alignment of short is:

struct st short { char x; short s; };
#define SHORT ALIGN (sizeof(struct st short) \

- sizeof(short))

The warning was issued for sizeof(struct st short). On the
host platform, the layout of st short is byte pad[1] byte2, while
on the target it is byte3pad[1]. Only one of the layouts has trailing
pad bytes, so constraint (1) in Figure 3 is violated.

Upon closer inspection, we notice that SHORT ALIGN evaluates
to 2 on the hypothetical platform, despite the fact that short is un-
aligned. The actual answer should be 1. ARM-like platforms align
all structures on boundaries no smaller than four bytes and add trail-
ing padding accordingly, something the macro doesn’t account for.
While the warning is meaningless for real target platforms, it is
certainly a bug on the hypothetical one, and sheds light on the type
portability assumptions made by the code. It is feasible (and within
the limits of the C standard) for a platform to unalign shorts while
keeping structs 4-byte aligned.

7. Discussion and Limitations
This section discusses various drawbacks of the general approach
described in this paper, with particular focus on the implementa-
tion, along with smaller issues not mentioned in the main discus-
sion.

7.1 Dynamic analysis
In retrospect, a conservative static analysis would have worked
better. The chief benefit of the dynamic analysis is the run-time type
precision. When a pointer cast is recorded, we know exactly what
the source type is, regardless of casts to void* and back or possibly
numerous pointer-cast hops through other types. The drawbacks are
many:

• A rich set of program inputs is assumed, so that the dynamic
analysis can reach many program paths. Many real-world (espe-
cially open-source) programs do not enjoy such test harnesses.
The user of the system is faced with learning how to force the
program down as many execution paths as possible.

• Performing an evaluation of a large set of real-world pro-
grams is difficult. As mentioned above, many of these programs
lack rich test harnesses. As a user who doesn’t understand the
innards of these programs, it is extremely difficult to know
whether the generated inputs are exercising the right program
paths. Path-coverage tools could be used to learn some of this
information.

• Finding type-portability issues in a program is a multi-step
process. The user must first instrument the program, exercise it
many times in a rich test harness with no knowledge of whether
he exercised a bug, and then invoke the analysis separately. It is
possible to run the analysis in a separate process and have the
runtime system communicate information to it directly via IPC,
allowing errors to be reported in real-time.

• The dynamic analysis in its current form cannot be run on
low-level code such as kernels and device drivers. To analyze

such code, one would have to implement a custom runtime
system in the kernel that outputs run-time information to a
special user-visible filesystem, such as /proc on Linux, and
ensure that the instrumentation doesn’t violate the fine-grained
assumptions that kernels make about how code is compiled.
Another possibility is to run the kernel in userspace, or run
device drivers in a thin userspace harness. Either way, the setup
overhead in analyzing kernel code is large.

• Portability bugs, like many types of bugs, are likely to lie
dormant on program paths that are not exercised very often by
test harnesses or real-usage inputs. Thus, even in the presence
of a rich test harness, a dynamic analysis would miss these bugs.

A static analysis would largely fix these problems at the expense
of precision loss in run-time type information. Presumably a static
analysis that approximates run-time types could assign many types
to an expression, many of which would result in false positives. My
experience with the tool tells me that the number of false positives
would be manageable and fairly precise static analysis is possible.
Such an analysis would also be of independent interest.

7.2 Alignment information
In its current form, the runtime system communicates type infor-
mation to the constraint analysis, but does not communicate any
runtime information, such as the addresses involved in a cast. This
extra information could be used to eliminate false positives. For ex-
ample, a pointer cast may fail because the alignment of the source
type is lower than that of the destination type (e.g. casting struct
T{char x[4];}* to struct U{int x;}*). However, if it indeed
happens that the source type is properly aligned, a warning is a false
positive. This kind of false positive could be ruled out if the anal-
ysis knew the source address. The tool can be easily augmented in
this direction. It hasn’t yet been done because false positives are
not currently a problem.

7.3 Preprocessor
As mentioned in Section 5, the instrumentation and analysis oc-
curs after the code has been preprocessed. Thus, any code that was
eliminated via selective compilation is not considered in the anal-
ysis. This may seem suspicious at first, since the preprocessor is
a standard way to make platform-dependent decisions and enforce
portability.

The purpose of the tool is to discover portability problems on
the host. Presumably, code that has not made it into the prepro-
cessed program has already been assigned as belonging to a differ-
ent platform. The tool aims to help the programmer find portability
problems in code running on the host, so that he can properly tuck it
away under platform-dependent preprocessor directives if needed.
Should a programmer decide that a warning is unwarranted, be-
cause he has already fixed that particular problem by writing equiv-
alent target-specific code guarded by a proper preprocessor direc-
tive, he could flag the warning as “fixed” so that it is not shown
again. Such a mechanism for flagging warnings is feasible but not
currently implemented.

7.4 Malloc wrappers
Since custom allocators and malloc wrappers are pervasive, our
tool offers a command-line option to specify all the possible names
for allocators and deallocators. We do make the assumption that
allocators are malloc-style, taking as argument a number of bytes
to be allocated. The tool treats allocators as primitive functions
and does not instrument their bodies. We do not instrument inside
malloc wrappers because they typically cast the malloc return
to void* or char*, which means that our address-type mapping
would contain only this type for all addresses!

7.5 Other kinds of portability problems
The tool’s focus is on the portability of types. One could presume
that issues like endianness (whether the least significant byte of a
piece of data is at the highest or lowest of the memory addresses
of the bytes in that data) should be included in type portability,
since endianness is defined in terms of the layout of data. Our ap-
proach does not handle endianness-related issues because our focus
resolutely ignores the contents of data. To capture endianness, we
would need a way to separate one byte of layout from another, in
other words reason about the contents of bytes.

While the system can be extended to detect some endianness-
related portability problems as a special case, I view endianness
as part of a more expressive framework that reasons both about
the preprocessor and the contents of data. Portability in such a
framework is defined as “the program yields the same observable
final state on both the host and the target.” Such a framework is left
for future work.

8. Related Work
Previous work related to the ideas presented in this paper can be
split into three categories: making C safer, employing a notion of
layout subsumption to check the legality of pointer casts; other ap-
proaches to detecting portability problems in code; and instrumen-
tation for detecting problems in C code.

8.1 Physical subtyping and safe C
CCured [28, 18, 27] is a C compiler that, among other techniques,
employs a “physical subtyping” relation to determine when pointer
casts are safe on the assumed platform. Their notion of physical
subtyping is much like the layout subsumption relation in Sec-
tion 3.3. CCured largely borrowed their notion of physical sub-
typing from work by Chandra et al. [17] and Siff et al. [34], who
used it to build a tool for understanding pointer-cast patterns in
C code. Our own notion of layout subsumption was heavily in-
spired by the Chandra/Siff work. However, their relation oper-
ates at a higher level and is less expressive: subsumption forces
fields to line up exactly and their names to be equal. So while a
cast from struct T{int x;int y;}* to struct U{int x;}*
is allowed, a cast from struct T{int x;}* to struct U{char
a;char b;char c;char d;}* is rejected. First, because the field
names don’t match, and second because the offset of x is not equal
to the offset of a. These kinds of casts are common in C and our
relation allows them.

CCured, along with Cyclone [22, 23, 26] and SafeCode [19],
make C safe but don’t address portability. After instrumenting the
code for safety, they pass it down to a standard C compiler. If the
input code performs a cast deemed illegal on the assumed platform,
a runtime exception may be thrown. CCured is built on top of
CIL [29], a C frontend that makes the same assumptions as the
standard C compiler on that platform. Typically, at the time these
compilers are built, their platform assumptions are fixed to those of
the underlying C compiler.

8.2 Work on portability
Possibly most closely related to our work, the GUARD [35] de-
bugger can be used to find portability problems in programs. Pre-
sumably, the user can have a program running on two platforms and
GUARD can debug them in parallel assuming that the two platforms
are networked. The programmer must specify points at which the
two programs should be in equivalent states, and GUARD can de-
tect when these specifications are violated. Using a form of delta
debugging [37], GUARD can narrow in on the point when the pro-
grams became out of sync. Like our system, GUARD aims to help
the programmer understand and find portability problems using a

dynamic analysis. Unlike our system, it requires the presence of
both the host and target platforms. Thus, it makes it very hard to
perform portability checking against a large number of platforms,
and impossible to check against hypothetical platforms. Another
difference is that GUARD requires the programmer to provide an-
notations. Our system works on plain C.

The key service provided by GUARD is assistance in identifying
the location where the states of the two programs became out of
sync, letting the programmer understand and trace the true source
of the problem. This means simultaneously analyzing both versions
of the program. Our approach presents the programmer with a list
of possible sources of problems along with explanations, letting
him find the locations of actual problems, if any. Given this and that
the programmer need not understand both versions of the program,
the burden on the programmer is lighter in our system than in
GUARD.

The Gnu C Compiler (Gcc) [5] includes flags that can be used
for finding type portability problems. The -Wpadded flag warns
whenever padding is included in a type’s layout. The programmer
can presumably use this information to increase his understand-
ing of the underlying type layout policy. The -Wcast-align flag
warns about pointer casts that may result in unaligned accesses.
E.g., it warns about a cast from char* to struct T{char x;}*
on the ARM platform, where the former type is unaligned and the
latter is 4-byte aligned. Cross-compilation can be used to get help
from Gcc without physical access to the target platform.

-Wpadded is a bare-bones approach to finding portability prob-
lems. Padding is a natural occurrence in layouts and most of the
time is not indicative of problems. Our system doesn’t care if
padding is used, so long as it doesn’t lead to type compatibility
problems. -Wcast-align is useful in finding bugs on platforms
with unconventional alignment policies, such as the ARM, but of-
fers no help with other problems, like porting from 32- to 64-bit.
Moreover, it warns only about types known by the Gcc type system,
which is only a weak indicator of the actual types involved in the
cast at runtime. Our approach faces none of these shortcomings, in
additional to being much more general and extensible.

Microsoft Visual Studio [15] includes a flag that aims to find
64-bit porting bugs in C code. The check consists of scanning the
program syntax and warning about all expression forms (int)e
where e has pointer type. Since on the 64-bit platform pointers
are 64 bits wide while int remains 32-bit, this sort of pattern
is almost always wrong. Our notion of layout subsumption by
definition doesn’t handle conversion casts like the one above, since
they concern the contents of data, not its layout. Our approach,
however, handles many kinds of type portability problems that this
simple check does not. The tool can be easily extended to special-
case this type of bug.

Lint-like technology, such as Splint [20], uses static analysis to
flag suspicious patterns in C code, including a range of unportable
constructs. The analysis can be guided by programmer-supplied
annotations in the form of special C comments. Portability bug-
checking in these tools is ad-hoc and doesn’t include a notion of
platform.

8.3 C instrumentation for bug-finding
Tools like Valgrind [30] and Purify [7] work by instrumenting C
programs to detect memory corruption errors. The user runs the
instrumented C program on a number of inputs. If a memory error
occurs during these runs, the tool offers detailed information about
the cause and location. While their general architecture is similar
to ours, Valgrind and Purify do nothing about portability problems.

Polishchuk et al. augmented the Gnu debugger to perform heap
type inference irrespective of the programmer-declared types. Like
us, they gather and solve layout constraints and use a notion of

layout subsumption to determine when a layout can be viewed at a
different type. (Their layout subsumption is borrowed directly from
the Chandra/Siff work [17, 34] mentioned above.) Their focus is on
finding memory corruption bugs; they do not address portability.

9. Conclusions and Future Work
We have presented a basic approach for understanding and check-
ing the portability of types in a C program. We’ve described an
implementation of the technique, which uses a dynamic analysis
to extract relevant information from a running C program, and an
offline analysis to check a set of portability constraints. We’ve de-
scribed our experiences with two case studies, on the Spread [14]
distributed system architecture and the Python [12] interpreter. Of
the 71 constraint facts, the analysis reported three warnings, two of
which were relevant issues and one a false positive.

At the top of the future work list is a static analysis that approx-
imates run-time type information. To be useful in general, such an
analysis would have to make use of data and control flow infor-
mation to increase precision. E.g., a typical pattern in C code is to
perform a cast to void* and at a later point perform a downcast
from void*, knowing that the pointer in question points to a par-
ticular kind of layout. An analysis that uses flow information may
determine that a downcast from void* is really an upcast.

With a static analysis in hand, the technique can be applied in a
number of ways. One example is inclusion in an integrated devel-
opment environment like Eclipse [4] or Microsoft Visual Studio.
Through a graphical interface, the programmer may be able to se-
lect platforms to check the program against. A live analysis would
highlight sources of problems and could easily display layout dis-
crepancies between types, visually explaining why a cast works on
the host but not on the target.

Another idea for future work is to enforce type portability by
explicitly laying out types in a particular way. For example, given
a pointer cast that works on the host and breaks on the target, the
problem is to find “least common denominator” layouts for the two
types such that the cast is forced to succeed on both platforms.
This approach can be integrated into CCured-like systems to emit
C code in which the types may be explicitly padded to force the
underlying C compiler to lay them out a particular way. A program
that targets CCured can then make more inadvertent assumptions,
as the augmented CCured will fix them at compile time.

Acknowledgments Sam Guarnieri implemented an early version
of the runtime system. Many ideas presented here were developed
under the guidance of, and in collaboration with, Dan Grossman.
Dan Grossman, Craig Chambers and David Notkin provided in-
valuable advice throughout the project.

References
[1] ARM: Alignment Bug. http://lists.linux-wlan.com/pipermail/linux-

wlan-devel/2003-July/002557.html.

[2] ARM: Invalid Stack Alignment Bug. http://gcc.gnu.org/ml/gcc-
patches/2000-03/msg00384.html.

[3] Bugzilla Bug 842. http://bugzilla.mindrot.org/show bug.cgi?id=842.

[4] ECLIPSE: An Open Development Platform. http://www.eclipse.org.

[5] GCC: The GNU Compiler Collection. http://gcc.gnu.org.

[6] IBM HOTSPOT Portability Bug. http://bugs.sun.com/bugdatabase/
view bug.do?bug id=4160327.

[7] IBM Rational Purify. http://www.ibm.com/software/awdtools/purify.

[8] Java Technology. http://java.sun.com.

[9] Mozilla.org C++ Portability Guide. http://www.mozilla.org/
hacking/portable-cpp.html.

[10] Processor Differences. http://www.windowsitlibrary.com/ Con-
tent/1685/05/1.html.

[11] Spread: Portability bug on Solaris 8. http://commedia.cnds.jhu.edu/
pipermail/spread-users/2002-November/001185.html.

[12] The Python Programming Language. http://www.python.org.

[13] The Scheme Programming Language. http://www-swiss.ai.mit.edu/
projects/scheme.

[14] The Spread Toolkit. http://www.spread.org.

[15] Visual Studio Developer Center. http://msdn.microsoft.com/vstudio.

[16] The ARMLinux Book Online, Chapter 10. May 2005.
http://www.aleph1.co.uk/armlinux/book.

[17] S. Chandra and T. Reps. Physical type checking for C. In ACM
Workshop on Program Analysis for Software Tools and Engineering,
pages 66–75, Toulouse, France, Sept. 1999.

[18] J. Condit, M. Harren, S. McPeak, G. Necula, and W. Weimer. CCured
in the real world. In ACM Conference on Programming Language
Design and Implementation, pages 232–244, June 2003.

[19] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing
alias analysis for weakly typed languages. In ACM Conference
on Programming Language Design and Implementation, Ottawa,
Canada, June 2006.

[20] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. Lclint: a tool for
using specifications to check code. In SIGSOFT ’94: Proceedings
of the 2nd ACM SIGSOFT symposium on Foundations of software
engineering, pages 87–96, New York, NY, USA, 1994. ACM Press.

[21] Fischer and Rabin. Super-Exponential Complexity of Presburger
Arithmetic. In SIAMAMS: Complexity of Computation: Proceedings
of a Symposium in Applied Mathematics of the American Mathemat-
ical Society and the Society for Industrial and Applied Mathematics,
1974.

[22] D. Grossman. Quantified types in imperative languages. ACM
Transactions on Programming Languages and Systems, 28(3):429–
475, May 2006.

[23] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. In ACM Conference
on Programming Language Design and Implementation, pages 282–
293, Berlin, Germany, June 2002.

[24] B. Hook. Write Portable Code. No Starch Press, 2005.

[25] ISO/IEC 9899:1999, International Standard—Programming
Languages—C. International Standards Organization, 1999.

[26] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical
Conference, pages 275–288, Monterey, CA, June 2002.

[27] G. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In 29th ACM Symposium on Principles of
Programming Languages, pages 128–139, Portland, OR, Jan. 2002.

[28] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: Type-safe retrofitting of legacy software. ACM Transactions
on Programming Languages and Systems, 27(3):477–526, May 2005.

[29] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation
of c programs. In Computational Complexity, pages 213–228, 2002.

[30] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In ACM Conference on
Programming Language Design and Implementation, pages 232–
244, June 2007.

[31] M. Nita, D. Grossman, and C. Chambers. A Theory of Implementation-
Dependent Low-Level Software (Technical Companion). Tech-
nical report, Univ. of Wash. Dept. of Computer Science & Engi-
neering, July 2006. Available at http://www.cs.washington.edu/
homes/marius/papers/tid/.

[32] M. Norrish. C formalised in HOL. PhD thesis, University of
Cambridge, 1998.

[33] W. Pugh and D. Wonnacott. Eliminating false data dependences using
the omega test. In PLDI ’92: Proceedings of the ACM SIGPLAN 1992
conference on Programming language design and implementation,
pages 140–151, New York, NY, USA, 1992. ACM Press.

[34] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps.
Coping with type casts in C. In 7th European Software Engineering
Conference and 7th ACM Symposium on the Foundations of Software
Engineering, pages 180–198, Toulouse, France, Sept. 1999.

[35] R. Sosic and D. Abramson. Guard: A relative debugger. Software -
Practice and Experience, 27(2):185–206, 1997.

[36] H. Spencer and G. Collyer. #ifdef considered harmful or portability
experience with C news. pages 185–198, Summer 1992.

[37] A. Zeller. Yesterday, my program worked. today, it does not. why? In
ESEC / SIGSOFT FSE, pages 253–267, 1999.

	Introduction
	Background
	Key idea
	Outline of the approach

	System Overview
	A language for memory layouts
	Platform descriptions
	Layout subsumption
	Constraint language

	Constraints from C Programs
	Implementation
	Instrumentation
	Runtime system
	Constraint analysis
	Platform descriptions

	Case Studies
	Experience with Spread
	Experience with Python

	Discussion and Limitations
	Dynamic analysis
	Alignment information
	Preprocessor
	Malloc wrappers
	Other kinds of portability problems

	Related Work
	Physical subtyping and safe C
	Work on portability
	C instrumentation for bug-finding

	Conclusions and Future Work

