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SKATE: A Web-Based Seismogram
Digitization Tool

by Andrew H. Bartlett, Benjamin A. Lichtner,
Marius Nita, Benamy Yashar, and Lowell E. Bartlett

ABSTRACT

Vast stores of paper- and film-based seismograms require novel
solutions to extract their unique seismological data. We created
a prototype software tool called SKATE (Software Kit for
Automatic Trace Extraction) that is designed for high-speed,
low-cost digitization of these archives. SKATE is a web-based
program that requires a user only to navigate to a website
(see Data and Resources) to begin digitizing seismogram images.
The software is free, is server based, requires no software down-
loads, is open source, and has digitized up to the point of editing
more than 30,000 World-Wide Standard Seismographic Net-
work (WWSSN) images. It is based on a set of image-processing
algorithms that identify real seismogram features while rejecting
spurious noise and which attempts to assign these features to
their proper place in a time series. Users can edit the results
and download the data for further processing. The code is pub-
licly available and is readily modifiable by qualified researchers.

INTRODUCTION

Vast archives of paper- and film-based historical seismograms
contain unique seismological data that are currently unavail-
able to modern digital processing techniques. Extracting the
data into a digital format from these archives, a process we refer
to as digitization, will have a significant impact in many
seismological studies, including those that address earthquake
hazards, earth structure, and nuclear explosion monitoring.

Various computer programs have been developed for
digitizing seismograms, and they have been applied to digitiza-
tion of small numbers of seismograms (Bromirski and Chuang,
2003; Pintore, et al., 2005; Bogiatzis and Ishii, 2016). Although
successful in their approach, their labor and computational
expenses prevent them from being effectively used for the digi-
tization of large archives of data, particularly those with active
and intersecting traces. Also, we have previously investigated im-
age vectorization as a means to rapidly identify features in
images of seismograms (Church et al., 2013) based on propri-
etary software developed at Los Alamos National Laboratory
(Prasad and Skourikhine, 2006). This approach, however, did

not speed up the processing and required the use of closed source
software. With these limitations in mind, our work has focused
on the development of a software package that can rapidly digi-
tize large archives at low cost. Additionally, we strove to create a
program that was easy to operate and scalable and is open source.

With these goals in mind, we created the prototype
seismogram digitization program called SKATE (Seismogram
Kit for Automatic Trace Extraction). SKATE is a web-based
image-processing program that is hosted on a remote Amazon
Web Services (AWS) platform. Its use requires users only to
navigate a browser to our user interface (see Data and Resour-
ces) to begin running the program. No software installation
nor purchasing of software is required, and client computer
requirements are minimal because all computationally inten-
sive processing is done on the remote server.

Our goal of low-cost mass digitization is met with the use
of powerful and scalable EC2 (Elastic Compute Cloud)
instances and S3 (Simple Storage Service) webservices on
AWS. To demonstrate this, we uploaded our entire repository
of scanned World-Wide Standard Seismographic Network
(WWSSN) seismographs—approximately 154,000 high-reso-
lution.png images—and digitized up to the point of editing
and placement of the traces in the final time series, more than
30,000 of these using Amazon EC2 cloud computing resour-
ces. This database of seismograms is fully searchable by date,
type, and geographical location. The results are editable, and
the outputted time-series data are downloadable both in JSON
and CSV formats. We have made all seismograms in our data-
base available for download at no charge and for any user. Ini-
tial digitization costs were less than $0.02 per image, a price
that can readily be reduced in future iterations.

The user manual can be found on the SKATE home page
and describes the complete operational procedures. Users can
edit, run segment connection algorithms, and download
time-series data on any of the already digitized seismograms.

Although the outputted data are not yet ready to be used in
waveform analysis programs, SKATE has been developed to the
point of a first release on our website. Many of the algorithms
can be further tuned, and additional algorithms have been tested
but not deployed, including the explicit identification of timing
marks, spurious feature rejection, and trace connection routines.
All of the code is open source and available at the GitHub
website in Data and Resources, and interested researchers are
encouraged to become contributors to this ongoing project.
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THE IMAGE-PROCESSING PIPELINE

The key tasks that SKATE performs are feature recognition,
that is, the identification and separation from background of
the seismic signal, the proper assignment of the signal to its
place in the time series, and the editing of these data in image
space. This is accomplished in an image-processing pipeline
written in the open-source Python programming language. We
created a comprehensive set of modules written in Python us-
ing a large library of existing image-processing functions that
process the image and extract and output centerline, that is,
time-series, data.

The pipeline is currently optimized to process WWSSN
long-period images. The decision to focus on this particular set
of data has allowed us to develop generic processes that can be
modified for other types of images, including short-period
WWSSN images, as well as others.

In this article, we use and briefly describe many common
image-processing algorithms. There are many excellent mono-
graphs, including Gonzalez and Woods (2008), that readers
can refer to for further detail. Additionally, web searches readily
turn up many detailed definitions, including many excellent
resources on Wikipedia.

The following sections detail the main algorithms in the
pipeline in the order in which they are run.

Get Region of Interest
Most WWSSN seismograms written before mid-1978 are avail-
able as 70-mm film chips. As part of this project, a subset of these
seismograms was electronically scanned and stored as lossless .png
files. Consequently, the active or actual region of the seismogram,
the region of interest (ROI), needs to be separated from the rest
of the image, which includes its ID and unused white space. We
also developed automatic ID identification using hit-or-miss
techniques to identify the actual ID numbers on the image; this
feature was not used in the work described in this article because
file names were already associated with the images.

The algorithm uses a combination of intensity threshold-
ing, morphological processing, and linear Hough transforms,
combined with an expected value of ROI area for error check-
ing, to yield a very accurate ROI. Images with ROIs outside the
expected area value are flagged and processing is halted because
this usually indicates a poor-quality image. Any features outside
the ROI are not considered in later analyses.

Get Meanlines
What we refer to in this article as “meanlines” are the zero-
energy lines about which the seismic traces oscillate. For a
WWSSN long-period image, there are typically 24 meanlines
in the image, one per hour, traversing the width of the seismo-
gram. Associating trace segments with their proper meanline,
what we call trace assignment, ensures their correct placement
in the final time series.

The meanline detection algorithm uses all the traces, active
or not, as features in a linear Hough transform to determine
meanlines. This works because all traces revert to the mean or

very near and because distortions in the image are very small
compared with the gap between hourly lines (Church et al.,
2013). Using timing marks for complementary meanline
detection was tested but found to be much less accurate.

A Hough transform is performed on the binary image,
with parameters limiting the search to a narrow angular range.
The resultant lines are plotted over the full width of the image
and saved as a JSON file for later use.

Ideally, all long-period WWSSN seismograms used in this
study should have 24 lines but midhour start and finish times,
and seismograms that do not encompass the entire 24 hr time
span will affect the actual number of meanlines found. The
editor, discussed later, allows meanlines to be added, deleted,
and moved. It is not important for our work to have exact
meanline positions because they are used only as a baseline
from which trace assignment algorithms can proceed. As long
as the meanline is closer to the correct hourly data than
adjacent data, the distanced-based connection algorithms will
operate as designed. A typical seismogram image with mean-
lines overlaid (color coded to show associations with associated
segments, used in the editing process) is shown in Figure 1.
Note that unevenly spaced meanlines are common. The shaded
ROI is also visible in this image.

Flatten Background
Because key parts of trace identification rely on local intensity
changes, small changes in intensity at low intensity levels may
lead to the identification of spurious features that might be
confused with real signal. Background flattening and smooth-
ing are therefore applied to assist in subsequent feature (trace)
identification routines by removing low-intensity background
fluctuations at both low and high frequencies. Flattening also is
an important preliminary step in the segmentation of the im-
age by creating “seeds” for subsequent watershed segmentation
algorithms. A background that smoothly varies across the im-
age is effective in dealing with images that have low-frequency
intensity variations caused by, for example, film processing,
storage, or other nonideal conditions.

Using histogram information, threshold parameters, and a
bivariate spline fit, we identify and smooth the background.
The result is a flattened image that has a smoothly varying
background across the image.

Centerline Detection
This module is used to identify the centerline of the seismic
traces, using a combination of spatial filtering tools. The goal is
to find the single-pixel-wide path that defines the unique signal
amplitude for each pixelated time increment: what we call the
centerline. The centerline is different than what we call the
“trace,” which is the 2D image created by the light beam ex-
posing the paper (Peterson and Hutt, 2014).

We apply a variety of spatial convolution kernels to iden-
tify the portions of the image that either are or are not a likely
part of the centerline. Then, applying a variety of bitwise
AND/OR operators to all the various convolved images, we
identify the centerlines as only the likely centerline features
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that are found in all the images, and we reject all others. Using
multiple and complementary methods to identify centerlines
greatly increases accuracy while minimizing spurious feature
detection.

The spatial convolution kernels used are Laplacian, Sobel
with directional dependence, and difference of Gaussians
(DoG) with directional dependence over multiple levels of blur.

The Laplacian filter is an edge finding convolution. By
keeping only positive values of the convolved image, we are
able to identify the edges of the trace and assign these edges
a FALSE, that is, noncenterline, value.

A challenge is to find the centerline of all traces over a
wide range of intensity values and image scales. Quiescent
traces have a high intensity owing to the relatively long resi-
dence time of the incident light beam on the original photo-
sensitive recording paper (Eastman Kodak Company, 1970).
Active traces are necessarily thinner and dimmer and conse-
quently are noisier and more difficult to segment. We use
the DoG filter to help with this problem.

The DoG filter is essentially a band-pass filter that iden-
tifies edge features at different scales and spatial frequencies.
We create a 3D stack of images (what we call an image
pyramid) to encompass different scales, comparing images at
increasing levels of Gaussian blurs. The blurs are applied sep-
arately in both the vertical and horizontal directions, where the
vertical is the conventional y direction in the original scanned
image, and the x direction the horizontal, resulting in two pyra-
mids each with directional dependence. When processing the
30,000 images that are available on SKATE, we used a 6-level
pyramid to speed up the process and reduce compute costs;
higher value pyramids can give better results.

Finally, a 1D Sobel filter in the vertical and horizontal
directions, respectively, is applied to the original image. We
calculate the absolute value of the Sobel to preserve all trace
edges as positive values. The image is thresholded at the Otsu
threshold of the Sobel image, which filters the image to pre-

serve only the steepest slopes on the trace’s intensity profile.
The image is saved as a binary with the steepest slopes only
having a FALSE value. Similar to the Laplacian, this is a way
to determine the edge pixels of a trace, which will later be
eliminated as part of the trace centerline finding algorithm.

With the above series of images—Laplacian, Sobel, and
DoG—a bitwise OR is now performed with the edge features
determined from these kernels, as well as the seeds from the
earlier flattening operation.

The returned image is a binary with those image features
most likely to be associated with the centerline assigned as
TRUE and the excluded background and edge regions assigned
as FALSE.

Because the DoG was performed over six blur levels, we
now perform the same bitwise OR operations on all scale levels
and in both the horizontally and vertically dependent pyra-
mids. The result is two 3D operators, each with respective hori-
zontal and vertical dependencies—what we call the image
cubes—that describe likely centerlines.

Because we are only looking for a single-pixel-wide center-
line, we find local maxima at all levels in each image cube, re-
membering that the image cube is a 3D stack of images whose
fundamental construction is based on the DoG image pyramid
at increasing levels of blur. We then collapse each image cube
into a single 2D array by selecting only the pixels from the local
maxima that are TRUE across all levels of the image cube.
Combining the results from the two cubes, the result is a
2D array of likely centerlines. We further limit the centerlines
by imposing minimum length and connectivity constraints.
These centerlines are saved and later will also be associated
with actual trace segments in the image.

Typical results for horizontal and vertically dependent
centerlines, which are then combined in the complete solution,
are shown in Figure 2. The centerline images have been
enhanced (eroded) to better display the results.

▴ Figure. 1. Computed meanlines and shaded ROI associated with a seismogram (vertical, long-period component from San Juan, Puerto
Rico, starting at 12:17 UTC on 9 February 1978).
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At this point, centerline data are not necessarily continu-
ous, reflecting the conservative nature of this algorithm. Tun-
ing the centerline detection parameters to add more centerline
data while excluding noise can be readily accomplished by code
improvements.

Segmentation
Although the above centerline detection determines the trace’s
path, we also need to have complete information on fore-
ground information to find intersections and then to assign
trace segments to centerlines.

Segmentation separates foreground data—the 2D seismic
traces—from background. The algorithm accomplishes this by
performing a watershed algorithm to segment the image into
foreground and background features. The algorithm requires
an input image and seed regions from which the watershed
flooding will propagate until the flooding basins meet at
the boundaries between traces and background.

Background seeds come from the previously described flat-
tening procedure, plus those obtained from a morphological ero-
sion of the input grayscale image using a structuring element
sufficient to eliminate all traces. Foreground seeds use the pre-
viously defined centerline pixels, both vertical and horizontal.

The watershed algorithm is then run on the grayscale im-
age, with small objects, both light and dark, eliminated with
minimum size, length, and connectivity parameters. The out-
put is a matrix with segmented regions identified with unique
labels, representing trace features that include coordinates, in-
tensity levels, and other useful feature information. These label
values are used in the subsequent operations of intersection
detection and centerline-to-meanline assignment.

Image Skeletonization and Intersection Identification
The previous segmentation procedure delivers the traces as ob-
jects. This segmented image is used to find the image skeleton,
which in turn is then used to map the intersections where
traces cross. The image skeleton is used instead of the center-
lines because the former creates an image with the same con-

nectivity as the original image versus the sparse connectivity of
the centerline image.

A medial axis transform is used to find the skeleton. The
image skeleton is a one-pixel-wide object representing the points
in the object that have more than one and almost always exactly
two closest points on the image boundary. Although this could
be interpreted as the actual centerline of the trace, it does not
necessarily coincide with the previously determined centerlines,
the latter of which represent maximum intensity or minimum
second derivative points of the trace’s vertical intensity profile.

Identifying intersections is critical for creating accurate
time series. When traces cross during seismic activity, we break
the centerlines within the intersection because we cannot de-
termine centerlines in the region when two traces overlap one
another. Therefore, we locate intersections and eliminate the
data within the intersection region in our final centerline data.
These gaps can (but are not in this iteration of SKATE) later
be bridged in the time-series data with curve fitting techniques.

Intersections need to be differentiated from dead ends,
spurs, and false intersections. Spurs, which are short dendritic
features forking off of the main skeleton, are removed by ex-
amining the ratio of the displacement of the spur’s pixel path
with respect to the width of the trace. Intersections are found
by finding pixels in the skeleton that are adjacent to three or
more other pixels in the skeleton. Adjacent, in this case, in-
cludes the four diagonal pixels. The size of the intersection
is found by getting the distance for the shortest path from each
intersection to the edge of the trace using the distance trans-
form of the image. This tends to overstate the size of the
intersection (though not by much) but assures that trace
centerline data are minimally confounded by adjacent, inter-
secting traces.

Each intersection is saved as a point with a radius value in
a GeoJSON Feature Collection.

Trace Assignment and Timing Mark Identification
All previously identified segments and their associated center-
lines are now assigned to a meanline. Currently, we are using a

▴ Figure 2. (a) Original image (vertical, long-period component from College, Alaska, starting at 18:50 UTC on 25 March 1977). (b) Center-
lines from the same region with horizontal dependencies. (c) Centerlines from the same region with vertical dependencies.
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single algorithm that uses the previously collected segment data
as inputs, including segment endpoints, centerline x values, y
values, average y values, and standard deviation from segment
mean. The algorithm uses the average y values of all segments to
assign segments to the nearest meanline. Initial assignment of
segments to meanlines is done by assigning them to meanlines
that are within 45 pixels of the segment’s average y value
(∼25% of the average vertical distance between meanlines):
this is a parameter specifically tuned for WWSSN long-period
images and chosen to capture most timing marks. During as-
signment, it builds a database of all of the meanlines, with in-
formation on their slope, which segments have been assigned to
which meanlines, segment y distance from the meanline, and
the domain in x that each assigned segment spans.

Next, timing marks are explicitly searched
for by using a size and distance discriminator.
Typical results are shown in Figure 3; the timing
marks are then assigned to their appropriate
meanline. Although not currently used explic-
itly, capturing a significant number of timing
marks allows a map of timing mark locations
to be created, which can later be used to normal-
ize and connect timing marks to their associ-
ated trace.

Segments that were not initially assigned to
any meanline are put into a list of orphaned seg-
ments. One by one, the assignment algorithm
examines an orphaned segment’s neighboring
segments in the x direction that have already
been assigned to meanlines. If the meanline

of a neighboring segment has room for the orphan (i.e., if
it has not already been assigned a segment that overlaps the
orphan’s domain), we assign the orphan segment to the mean-
line. We continue to iterate this process until all orphans are
assigned or until their neighboring segments’ meanlines have
no more room. Remaining orphans are assigned to the closest
meanline with room, regardless of neighboring segments. An
additional benefit of this algorithm is that it partially eliminates
spurious noise features by deleting features that cannot fit in
any domain.

Figure 4 is an overall view of a digitized and edited seismo-
gram. Figure 5 is a detail of the same seismogram with markers
showing the traces, meanlines, and centerlines. Note that
although the meanlines are not precisely placed, the assignment
algorithm still worked well.

▴ Figure 3. Timing marks obtained from the assignment algorithm.

▴ Figure 4. Overall view of a digitized and edited seismogram (vertical long period from Istanbul, Turkey, starting at 07:32 UTC on 23
March 1978).
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Editing and Data Output
When the assignment algorithm is complete, SKATE allows
the user to edit meanlines, segments, and segment assignments
in the browser. Detailed descriptions of the methodology are
found in the user manual on the SKATE website; the steps in
editing any seismogram are summarized in the flowchart in
Figure 6. Several fully edited seismograms are available on
the SKATE website that can be found by limiting the search
to edited files. Users can also select any of the 30,000 processed
seismograms, run the assignment algorithm, and edit them
themselves. After editing, the centerline data are directly down-
loadable as CSV or JSON files and are listed as columnar x–y
data for each hourly line on the seismogram.

USER INTERFACE AND COMPUTER
ARCHITECTURE

The user interface is a service-oriented web-based system that
has been deployed on a host server using AWS. There are
numerous reasons supporting this choice of architecture, in-
cluding cost, reliability, ease of use, and scalability. The main
features of the architecture are the image-processing pipeline,
the browser app, and the server. The pipeline is the previously
described set of Python image-processing algorithms. The
browser app runs on the user’s browser and consists of the file
browser, the viewer, and the editing tools. It runs fully on the
client side and interacts with the web server. When the user
navigates to the user interface, the web browser downloads
the entire web app, and the application from then on runs fully
inside the browser on the user’s computer. The app occasion-
ally requests and pushes data to the server, such as saving edited
data, or downloading existing metadata. The server is the code
running on the remote host machine on AWS, up 100% of the
time and ready to reply to requests sent to it by the browser
app. The server can save metadata to S3, query the database for

files, and verify authorization. It is the computational power
behind the browser app.

The web server is implemented in Node.js. Node.js is a
JavaScript runtime environment built on Chrome’s V8
JavaScript engine. Node.js uses an event-driven, nonblocking
I/O model that makes it lightweight and efficient (see Data
and Resources). It is scalable, allowing it to handle large vol-
umes of requests that might occur in future development.

The browser app is written in JavaScript and Angular,
allowing for open-source development that can build dynamic
views of data that change immediately in response to user
actions. It is well suited for SKATE’s browser-based implemen-
tation.

In addition to the 5 TB of image data stored on Amazon
S3, all metadata and thumbnail images are also stored on S3. A
Mongo database stores the file and station data. Mongo was
chosen because of its speed and simplicity; it is an open-source
document database designed for ease of development and

▴ Figure 5. Detail of Figure 4 with key features listed.

▴ Figure 6. Flow chart of the editing process.
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scalability. It is well suited for our needs, especially with our
simple data structures, which in this case consist only of file
names and type, station IDs, date and time, and processing sta-
tus. The 16-digitWWSSN filename was used to create most of
these metadata.

To render each seismogram in the browser, we use an ad-
vanced image-tiling technique that makes it unnecessary for
the user’s computer to deal with the opening of large images.
When viewing a seismogram, we only display the viewable part
of the image, sampled down to match the current zoom level.
This rendering technique dramatically speeds up browsing and
editing activities, and it optimizes data transfer from AWS serv-
ers to the client computer. We use Leaflet, an open-source Java-
Script library for interactive maps. It works efficiently across all
major desktop and mobile platforms out of the box, taking ad-
vantage of HTML5 and CSS3 on modern browsers while
being accessible on older ones, too. A flowchart of the overall
operation of the program is shown in Figure 7.

CONCLUDING REMARKS

Interpreting Department of Energy standards, SKATE is at a
Technical Readiness level of 6 (demonstration in a relevant
environment), with portions of the program, particularly the
web interface, at near-final operational levels (U.S. Department
of Energy, 2011). Practically, this means that the image-
processing algorithms are in place and operational but need
to be further improved in the following areas:
• Feature rejection. ROI border artifacts, handwritten notes

and data stamps, and film processing byproducts can be
dealt with using morphological, intensity, and assignment
schemes.

• Feature recognition. As discussed, the methods used are
conservative to limit postprocessing editing of spurious
features. Improved recognition need not compete with
feature rejection. Many parameters used in the pipeline

algorithms can be better tuned or made
user adjustable with small changes to the
user interface.

In addition to the work presented in this article,
we have investigated numerous other segment as-
signment algorithms, details of which are avail-
able at our GitHub repository. They include:
• Clustering methods based on Frey-Dueck

and k-means techniques (Frey and Dueck,
2007).

• Multiple Traveling Salesmen using agent-
based methods to find and reinforce the
most likely paths across each hourly por-
tion of the image.

• Bayesian methods with Kalman filters to
identify the most probable connections
for segments (Glickman and Van
Dyk, 2007).

• Non-Subsampled Contourlet Decomposi-
tion: Directional decomposition of image

with directional filter banks (Park et al., 2000).

Detailed descriptions of these techniques, including alter-
nate methods to map timing marks, can be found at the
website in Data and Resources. Additional development efforts
need to be taken to incorporate these into the software, but we
anticipate that combining these methods in a multicriteria de-
cision-making matrix to complete a trace path across each
hourly portion of the seismogram will produce high confidence
results.

The pipeline is written in Python and is freely available at
our GitHub repository as a package of modules that can be run
on a user’s own computer. Previously discussed computing re-
quirements may limit the size or resolution of the images being
processed on a desktop computer, but these modules will allow
developers to directly study and modify all of the parameters
dictating the feature recognition quality in the outputted im-
age. Editing is not available on the desktop version.

SKATE has been designed to gain acceptance and persistence
in use by being written with all open-source software. We invite
qualified researchers to help further develop and improve the
code. Digitizing a seismogram in seconds on a website and pulling
out a complete time-series solution in a very short time is unique
and compelling and is the only practical way to unlock the in-
formation currently unavailable in millions of seismograms.

We are looking for partners to help us move the SKATE
program and its 154,000 scanned WWSSN seismograms to a
permanent site to ensure its long-term persistence. Continued
development will allow it to meet nonproliferation national secu-
rity goals and will expand the scope of seismology by opening up
the vast archive of analog data to modern analytic techniques.

DATA AND RESOURCES

All data used in this article came from published sources listed in
the references. All seismograms on the SKATE website and used
in this article come from scanned World-Wide Standard
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Seismographic Network (WWSSN) images provided to the U.S
Geological Survey (USGS) under numerous contracts with
Retriever Technology. The scans cover seismograms from the
early 1960s up to the late 1970s and were chosen exclusively
by the USGS. Digitized seismograms on the SKATE website
were randomly chosen from 1970 and later. Long-period seismo-
grams represent the vast majority of digitized images. SKATE is
located at http://seismo.redfish.com. Ancillary information,
including all software, additional documentation, and
unpublished research, is found at https://github.com/
Retrievertech. Users of the SKATE website who wish to save
their own edited time-series data should contact RetrieverTech-
nology for login credentials. GitHub is available at https://
github.com/retrievertech. Node.js is available at https://
nodejs.org/en. Detailed descriptions of the techniques of
GitHub repository can be found at https://github.com/
retrievertech/Additional-documentation. All websites were
last accessed on July 2018.
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