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The memory-safety of a C program often depends on assumptions 
that hold for some but not all compilers and machines.
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Example
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struct S { void *buf; int    len; };
struct D { void *buf; size_t len; };
...
struct S ss[100];
...
struct D* ds = (struct D*)ss;
...
// treat ds[N].len as the length of ds[N].buf
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...
struct S ss[100];
...
struct D* ds = (struct D*)ss;
...
// treat ds[N].len as the length of ds[N].buf
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Porting is Hard

Low-level programs make platform-dependent assumptions:

How structs are padded.

Sizes of types.

Alignment restrictions of the underlying hardware.
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Porting is Hard

Low-level programs make platform-dependent assumptions:

How structs are padded.

Sizes of types.

Alignment restrictions of the underlying hardware.

Porting to new platforms is hard:

Must identify which code needs to change.
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Tool Support is Weak

Lint-like technology.

Grep.

Compiler flags:

-Wpadded

-Wcast-align
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POPL + C = ?
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POPL + C = ?

Improving C (e.g., CCured, Cyclone, Deputy, SAFECode):

Assume a particular platform or

Make the same assumptions as the underlying C compiler.
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POPL + C = ?

Improving C (e.g., CCured, Cyclone, Deputy, SAFECode):

Assume a particular platform or

Make the same assumptions as the underlying C compiler.

Formal semantics for C-like languages (e.g., Leroy, Norrish):

Omit platform-dependent operators or

Model platform-dependent steps as nondeterminism.
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This Work

Semantics for a C-like language:

Explicit notion of platform and platform-dependent steps.

Memory-safety is platform-dependent.
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This Work

Semantics for a C-like language:

Explicit notion of platform and platform-dependent steps.

Memory-safety is platform-dependent.

A bug-finding tool:

Discovers a class of portability bugs in C programs 
statically.

Does not need physical access to target platforms.
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A platform plays two roles:

Parameter to the operational semantics.

Something that can be described with a
layout portability constraint.



Overview

Explicit notion of platform.

A platform plays two roles:

Parameter to the operational semantics.

Something that can be described with a
layout portability constraint.

Given a program e:

We extract a constraint S from e.

e is memory-safe on all platforms Π described by S.
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Ingredients

Operational semantics parameterized by platforms.
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Ingredients

Operational semantics parameterized by platforms.

Constraints and constraint checking.

Constraint extraction: type-and-effect system.
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Π ⊢ e → e’

Π ⊨ S

Γ ⊢ e:τ ; S



Key Theorem
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If  Γ ⊢ e:τ ; S  and  Π ⊨ S

and  Π ⊢ e →* e’ , then e’ is not stuck on Π.



Core Language
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C-like language with many relevant features, including:

struct types

pointer casts: (τ*)e

address-of-field operator: &e→f



Operational Semantics
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Byte-level memory model.

*e steps to a sequence of n bytes.

n = size of e’s type.

As in C, pointer casts are unchecked.

(τ*)e steps to e.



Parameter to the Operational Semantics

How many bytes do we fetch?
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Type-and-effect system:

Γ ⊢ e:τ ; S

Γ ⊢ e1;e2 : τ ; S1 ∧ S2

Γ ⊢ e1:τ’ ; S1 Γ ⊢ e2:τ ; S2

Most rules are standard:



Pointer Cast Constraint
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Γ ⊢ (τdest*)e : τdest* ; S ∧  subtype(  layout(τsrc)*, layout(τdest)*  )
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Pointer Cast Constraint
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Γ ⊢ (τdest*)e : τdest* ; S ∧  subtype(  layout(τsrc)*, layout(τdest)*  )

layout: a type’s in-memory layout

subtype: subtyping of memory blocks

Γ ⊢ e:τsrc* ; S
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Checking Constraints
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Π ⊨ subtype(  layout(τsrc)*, layout(τdest)*  )

Π.layout(τsrc)*

Π.layout(τdest)*

is a physical subtype of
Chandra/Reps
Condit et al.

if and only if



Physical Subtyping
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S S’

S

Drop the suffix under a pointer:

≤



Physical Subtyping
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S1

Can always subsume to pad bytes:

≤

S2 S3

S1 padding S3
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If  Γ ⊢ e:τ ; S  and  Π ⊨ S

and  Π ⊢ e →* e’ , then e’ is not stuck on Π.

Proof employs a platform-dependent type system: Π;Γ ⊢ e:τ.

Theorem: If Π;Γ ⊢ e:τ and Π ⊢ e →* e’, then e’ is not stuck on Π.  

Theorem: If Γ ⊢ e:τ ; S and Π ⊨ S, then Π;Γ ⊢ e:τ.
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Tool that finds unportable pointer casts in C programs.

Uses a may-alias analysis to approximate run-time types.

Host/target setup:

Host: platform on which the program is known to run well.

Target: platform to which the program is to be ported.

Warn only when a cast works on the host but not on the 
target.

“Platforms” are defined by us procedurally.

30-50 lines of OCaml per platform definition.



wasp.cs.washington.edu
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Ran the tool on Spread:

Messaging bus for use by distributed applications.



wasp.cs.washington.edu

Case Study

Ran the tool on Spread:

Messaging bus for use by distributed applications.

Found two bugs: one previously unreported.

Host: Standard 32-bit/gcc/X86 platform.

Target: gcc/LP-64 platform.

Zero false positives reported.



wasp.cs.washington.edu

Case Study: Tool Output

struct scat_element { void *buf; int    len; };
struct iovec        { void *buf; size_t len; };
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Case Study: Tool Output

data_link.c:196: scat_element * ==> iovec *

    Host (Gcc/32-bit/X86):
        Src:  ptr(ptr(b) bbbb)
        Dest: ptr(ptr(b) bbbb)

    Target (Gcc/LP-64):
        Src:  ptr(ptr(b) bbbb----)
        Dest: ptr(ptr(b) bbbbbbbb)

struct scat_element { void *buf; int    len; };
struct iovec        { void *buf; size_t len; };
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Conclusion

Semantics for a C-like language with unspecified type layout.

Analysis that finds platform dependencies.

Some uses:

Porting tools.

Documentation.

Specifications for safe languages with (partially) 
unspecified features.
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More in the Paper

Alignments.

Complete description of platforms and the constraint language.

Extensions: arrays, recursive types, conditional execution.

Detailed tool discussion.
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Thank You!


