
A Theory of Platform-Dependent
Low-Level Software

Marius Nita

Dan Grossman

Craig Chambers

University of Washington WASP Group

wasp.cs.washington.edu

The memory-safety of a C program often depends on assumptions
that hold for some but not all compilers and machines.

wasp.cs.washington.edu

Example

wasp.cs.washington.edu

struct S { void *buf; int len; };
struct D { void *buf; size_t len; };
...
struct S ss[100];
...
struct D* ds = (struct D*)ss;
...
// treat ds[N].len as the length of ds[N].buf

Example

wasp.cs.washington.edu

struct S { void *buf; int len; };
struct D { void *buf; size_t len; };
...
struct S ss[100];
...
struct D* ds = (struct D*)ss;
...
// treat ds[N].len as the length of ds[N].buf

Example

wasp.cs.washington.edu

struct S { void *buf; int len; };
struct D { void *buf; size_t len; };
...
struct S ss[100];
...
struct D* ds = (struct D*)ss;
...
// treat ds[N].len as the length of ds[N].buf

buf len32-bit: S

D buf len

Example

wasp.cs.washington.edu

struct S { void *buf; int len; };
struct D { void *buf; size_t len; };
...
struct S ss[100];
...
struct D* ds = (struct D*)ss;
...
// treat ds[N].len as the length of ds[N].buf

buf len32-bit: S

D buf len

buf len padding

buf len

S

D

LP-64:

Porting is Hard

Low-level programs make platform-dependent assumptions:

How structs are padded.

Sizes of types.

Alignment restrictions of the underlying hardware.

wasp.cs.washington.edu

Porting is Hard

Low-level programs make platform-dependent assumptions:

How structs are padded.

Sizes of types.

Alignment restrictions of the underlying hardware.

Porting to new platforms is hard:

Must identify which code needs to change.

wasp.cs.washington.edu

Tool Support is Weak

Lint-like technology.

Grep.

Compiler flags:

-Wpadded

-Wcast-align

wasp.cs.washington.edu

POPL + C = ?

wasp.cs.washington.edu

POPL + C = ?

Improving C (e.g., CCured, Cyclone, Deputy, SAFECode):

Assume a particular platform or

Make the same assumptions as the underlying C compiler.

wasp.cs.washington.edu

POPL + C = ?

Improving C (e.g., CCured, Cyclone, Deputy, SAFECode):

Assume a particular platform or

Make the same assumptions as the underlying C compiler.

Formal semantics for C-like languages (e.g., Leroy, Norrish):

Omit platform-dependent operators or

Model platform-dependent steps as nondeterminism.

wasp.cs.washington.edu

This Work

Semantics for a C-like language:

Explicit notion of platform and platform-dependent steps.

Memory-safety is platform-dependent.

wasp.cs.washington.edu

This Work

Semantics for a C-like language:

Explicit notion of platform and platform-dependent steps.

Memory-safety is platform-dependent.

A bug-finding tool:

Discovers a class of portability bugs in C programs
statically.

Does not need physical access to target platforms.

wasp.cs.washington.edu

wasp.cs.washington.edu

Formal Semantics

Overview

wasp.cs.washington.edu

Explicit notion of platform.

A platform plays two roles:

Parameter to the operational semantics.

Something that can be described with a
layout portability constraint.

Overview

Explicit notion of platform.

A platform plays two roles:

Parameter to the operational semantics.

Something that can be described with a
layout portability constraint.

Given a program e:

We extract a constraint S from e.

e is memory-safe on all platforms Π described by S.

wasp.cs.washington.edu

Ingredients

Operational semantics parameterized by platforms.

wasp.cs.washington.edu

Π ⊢ e → e’

Ingredients

Operational semantics parameterized by platforms.

Constraints and constraint checking.

wasp.cs.washington.edu

Π ⊢ e → e’

Π ⊨ S

Ingredients

Operational semantics parameterized by platforms.

Constraints and constraint checking.

Constraint extraction: type-and-effect system.

wasp.cs.washington.edu

Π ⊢ e → e’

Π ⊨ S

Γ ⊢ e:τ ; S

Key Theorem

wasp.cs.washington.edu

If Γ ⊢ e:τ ; S and Π ⊨ S

and Π ⊢ e →* e’ , then e’ is not stuck on Π.

Core Language

wasp.cs.washington.edu

C-like language with many relevant features, including:

struct types

pointer casts: (τ*)e

address-of-field operator: &e→f

Operational Semantics

wasp.cs.washington.edu

Byte-level memory model.

*e steps to a sequence of n bytes.

n = size of e’s type.

As in C, pointer casts are unchecked.

(τ*)e steps to e.

Parameter to the Operational Semantics

How many bytes do we fetch?

wasp.cs.washington.edu

*e → ???

Parameter to the Operational Semantics

wasp.cs.washington.edu

*e → ???

How many bytes do we fetch?

Depends on the size of e’s type.

The size of e’s type is platform-dependent.

Parameter to the Operational Semantics

How many bytes do we fetch?

Depends on the size of e’s type.

The size of e’s type is platform-dependent.

wasp.cs.washington.edu

Π ⊢ e → e’

*e → ???

Layout Constraints

wasp.cs.washington.edu

S = access(4,8) ⋀ sizeof(long) = 8

Layout Constraints

wasp.cs.washington.edu

S = access(4,8) ⋀ sizeof(long) = 8

True on platforms on which

8-byte accesses at 4-byte alignments are allowed

type long is 8 bytes

Layout Constraints

wasp.cs.washington.edu

S = access(4,8) ⋀ sizeof(long) = 8

True on platforms on which

8-byte accesses at 4-byte alignments are allowed

type long is 8 bytes

Π ⊨ S

Extracting Constraints

wasp.cs.washington.edu

Type-and-effect system:

Γ ⊢ e:τ ; S

Extracting Constraints

wasp.cs.washington.edu

Type-and-effect system:

Γ ⊢ e:τ ; S

Γ ⊢ e1;e2 : τ ; S1 ∧ S2

Γ ⊢ e1:τ’ ; S1 Γ ⊢ e2:τ ; S2

Most rules are standard:

Pointer Cast Constraint

wasp.cs.washington.edu

Γ ⊢ (τdest*)e : τdest* ; S ∧ subtype(layout(τsrc)*, layout(τdest)*)

Γ ⊢ e:τsrc* ; S

Pointer Cast Constraint

wasp.cs.washington.edu

Γ ⊢ (τdest*)e : τdest* ; S ∧ subtype(layout(τsrc)*, layout(τdest)*)

layout: a type’s in-memory layout

subtype: subtyping of memory blocks

Γ ⊢ e:τsrc* ; S

Checking Constraints

wasp.cs.washington.edu

Π ⊨ subtype(layout(τsrc)*, layout(τdest)*)

Checking Constraints

wasp.cs.washington.edu

Π ⊨ subtype(layout(τsrc)*, layout(τdest)*)

Π.layout(τsrc)*

Π.layout(τdest)*

is a physical subtype of

if and only if

Checking Constraints

wasp.cs.washington.edu

Π ⊨ subtype(layout(τsrc)*, layout(τdest)*)

Π.layout(τsrc)*

Π.layout(τdest)*

is a physical subtype of
Chandra/Reps
Condit et al.

if and only if

Physical Subtyping

wasp.cs.washington.edu

S S’

S

Drop the suffix under a pointer:

≤

Physical Subtyping

wasp.cs.washington.edu

S1

Can always subsume to pad bytes:

≤

S2 S3

S1 padding S3

Key Theorem

wasp.cs.washington.edu

If Γ ⊢ e:τ ; S and Π ⊨ S

and Π ⊢ e →* e’ , then e’ is not stuck on Π.

Key Theorem

wasp.cs.washington.edu

If Γ ⊢ e:τ ; S and Π ⊨ S

and Π ⊢ e →* e’ , then e’ is not stuck on Π.

Proof employs a platform-dependent type system: Π;Γ ⊢ e:τ.

Key Theorem

wasp.cs.washington.edu

If Γ ⊢ e:τ ; S and Π ⊨ S

and Π ⊢ e →* e’ , then e’ is not stuck on Π.

Proof employs a platform-dependent type system: Π;Γ ⊢ e:τ.

Theorem: If Π;Γ ⊢ e:τ and Π ⊢ e →* e’, then e’ is not stuck on Π.

Key Theorem

wasp.cs.washington.edu

If Γ ⊢ e:τ ; S and Π ⊨ S

and Π ⊢ e →* e’ , then e’ is not stuck on Π.

Proof employs a platform-dependent type system: Π;Γ ⊢ e:τ.

Theorem: If Π;Γ ⊢ e:τ and Π ⊢ e →* e’, then e’ is not stuck on Π.

Theorem: If Γ ⊢ e:τ ; S and Π ⊨ S, then Π;Γ ⊢ e:τ.

wasp.cs.washington.edu

Bug-Finding Tool

Bug-Finding Tool

wasp.cs.washington.edu

Tool that finds unportable pointer casts in C programs.

Bug-Finding Tool

wasp.cs.washington.edu

Tool that finds unportable pointer casts in C programs.

Uses a may-alias analysis to approximate run-time types.

Bug-Finding Tool

wasp.cs.washington.edu

Tool that finds unportable pointer casts in C programs.

Uses a may-alias analysis to approximate run-time types.

Host/target setup:

Host: platform on which the program is known to run well.

Target: platform to which the program is to be ported.

Bug-Finding Tool

wasp.cs.washington.edu

Tool that finds unportable pointer casts in C programs.

Uses a may-alias analysis to approximate run-time types.

Host/target setup:

Host: platform on which the program is known to run well.

Target: platform to which the program is to be ported.

Warn only when a cast works on the host but not on the
target.

Bug-Finding Tool

wasp.cs.washington.edu

Tool that finds unportable pointer casts in C programs.

Uses a may-alias analysis to approximate run-time types.

Host/target setup:

Host: platform on which the program is known to run well.

Target: platform to which the program is to be ported.

Warn only when a cast works on the host but not on the
target.

“Platforms” are defined by us procedurally.

30-50 lines of OCaml per platform definition.

wasp.cs.washington.edu

Case Study

Ran the tool on Spread:

Messaging bus for use by distributed applications.

wasp.cs.washington.edu

Case Study

Ran the tool on Spread:

Messaging bus for use by distributed applications.

Found two bugs: one previously unreported.

Host: Standard 32-bit/gcc/X86 platform.

Target: gcc/LP-64 platform.

Zero false positives reported.

wasp.cs.washington.edu

Case Study: Tool Output

struct scat_element { void *buf; int len; };
struct iovec { void *buf; size_t len; };

wasp.cs.washington.edu

Case Study: Tool Output

struct scat_element { void *buf; int len; };
struct iovec { void *buf; size_t len; };

wasp.cs.washington.edu

Case Study: Tool Output

data_link.c:196: scat_element * ==> iovec *

 Host (Gcc/32-bit/X86):
 Src: ptr(ptr(b) bbbb)
 Dest: ptr(ptr(b) bbbb)

 Target (Gcc/LP-64):
 Src: ptr(ptr(b) bbbb----)
 Dest: ptr(ptr(b) bbbbbbbb)

struct scat_element { void *buf; int len; };
struct iovec { void *buf; size_t len; };

wasp.cs.washington.edu

Conclusion

Semantics for a C-like language with unspecified type layout.

Analysis that finds platform dependencies.

Some uses:

Porting tools.

Documentation.

Specifications for safe languages with (partially)
unspecified features.

wasp.cs.washington.edu

More in the Paper

Alignments.

Complete description of platforms and the constraint language.

Extensions: arrays, recursive types, conditional execution.

Detailed tool discussion.

wasp.cs.washington.edu

Thank You!

