Using Twinning to Adapt Programs to Alternative APIs

Marius Nita

David Notkin

Computer Science & Engineering
University of Washington
{marius,notkin}@cs.washington.edu

ABSTRACT

We describe twinning and its applications to adapting pro-
grams to alternative APIs. Twinning is a simple technique

that allows programmers to specify a class of program changes,

in the form of a mapping, without modifying the target pro-
gram directly. Using twinning, programmers can specify
changes that transition a program from using one API to
using an alternative API.

We describe two related mapping-based source-to-source
transformations. The first applies the mapping to a pro-
gram, producing a copy with the changes applied. The sec-
ond generates a new API that abstracts the changes specified
in the mapping. Using this API, programmers can invoke
either the old (replaced) code or the new (replacement) code
through a single interface.

Managing program variants usually involves heavyweight
tasks that can prevent the program from compiling for ex-
tended periods of time, as well as simultaneous maintenance
of multiple implementations, which can make it easy to for-
get to add features or to fix bugs symmetrically. Our main
contribution is to show that, at least in some common cases,
the heavyweight work can be reduced and symmetric main-
tenance can be at least encouraged, and often enforced.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.12 [Software Engineering]: Interoperability

Keywords

Twinning, API mapping, source-to-source translation

1. INTRODUCTION

Developers often implement and maintain code artifacts
as variations of existing programs. This in turn creates the
challenge of keeping the common parts of the variants up-to-
date with one another while still allowing the varying parts
to evolve independently.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

An increasingly familiar example of this arises when mod-
ifying a program to use an alternative application program-
ming interface (API), either in place of or in addition to
an existing one. Sometimes, the task is to support libraries
that may be installed some places but not others (for exam-
ple, graphical user interfaces), or to support libraries with
different performance characteristics, etc. Other times, the
programmer may want to reuse an existing function imple-
mented by code that uses different APIs than the ones de-
sired. For example, to create a GUI to a new online social
service, it may be much more straightforward to retrofit an
existing GUI for another social service than to start from
scratch.

The proliferation of open source software and code search
tools makes it increasingly simpler to find large sets of sim-
ilar APIs and existing code. As just two among myriad
examples, there are around forty XML parsing libraries and
a dozen online map services, each with unique strengths and
weaknesses. Tool support for transitioning code to use these
APIs is largely missing, leaving programmers to perform the
implementation and maintenance manually.

Additionally, effective ways to manage these activities de-
pend, in part, on the ownership of both the original pro-
gram and the variant. For example, if a developer’s team
owns both, then changes to code that is shared can be prop-
agated to both implementations. In cases where the vari-
ant is a independent fork (’clone-and-own”), such changes
are more difficult, perhaps reducing the approach to simply
triggering some concern that corresponding changes may be
warranted in the other implementation.

Regardless of the ownership model, the general absence of
tool support makes it heavyweight, tedious, and error-prone
to maintain the desired relationship between the common
parts of the variants.

In this paper we describe twinning, a technique that allows
programmers to maintain differences from an existing base
program in terms of a code-level mapping. With twinning,
we can write a mapping specifying how two APIs A and B
correspond to one another, and then apply it to base code
using A to get a variant of it that uses B. Ongoing changes
to the base code can be reimported by applying the mapping
again to a later version, possibly adjusting the mapping in
the process. We also describe a transformation that uses
the mapping to generate a new API C that abstracts the
details of both A and B. APIs A and B can be manipulated
uniformly through this abstract interface. The intent of this
pair of approaches to twinning is to provide support for the
varied code ownership models described above.

Vector objects =[;;ﬁ'655£d;1£; cee

void printobjecté(ngié;_objects) {
(a) Enumeration e = 'objects.elements()};
while de.hasMoreElements(ﬂb

void printObjects(ArrayList objects) {

(b) Iterator it ='objects.iterator();
while (it.hasNext()|)

System.out.println(it.next()); }

void printObjects(Seq objects) {
(c) Iter it =|objects.getIter()};
while (it.hasMore()))

interface Seq {

Iter getIter(); }
(d) | interface Iter {
boolean hasMore();
Object getNext(); }

class VectorSeq implements Seq {

Vector v;
VectorSeq() {
this.v = new Vector(); }
Iter getIter() {
return new EnumIter(this.v.elements()); } }

(e) | class EnumIter implements Iter {
Enumeration e;
VectorIter (Enumeration e) {

this.e = e; }
boolean hasMore() {

return this.e.hasMoreElements(); }
Object getNext() {

return this.e.nextElement(); } }

class ArraySeq implements Seq {
ArrayList a;
ArraySeq() {
this.a = new ArrayList(); }
Iter getIter() {
return new IterIter(this.a.iterator()); } }
(f) |class IterIter implements Iter {
Iterator i;
ArrayIter(Iterator i) {
this.i = i; }
boolean hasMore() {
return this.i.hasNext(); }
Object getNext() {
return this.i.next(); } }

Figure 1: Two implementations of a function using
similar APIs (a-b) and a third implementation (c)
using an API (d-f) that abstracts both initial APIs.

The rest of the paper is structured as follows. Section 2
discusses known design patterns for managing alternatives
and their tradeoffs. Sections 3 through 6 detail the core
components of twinning: the mapping language and the
mapping-based program transformations. Section 7 describes
how we applied twinning to retrofit programs to use alter-
native APIs. Section 8 discusses the limitations of twinning,
Section 9 describes the related work, and Section 10 con-
cludes with a discussion of future work.

2. WHY MANUAL ADAPTATION IS HARD

There are two main approaches to modifying a program
to support an API B as an alternative to an API A. The
first approach modifies the subset of the program that uses
API A to use API B instead. We call this approach shallow
adaptation. The second approach, which we call deep adap-
tation, modifies the program to use a “more abstract” API C

instead of A. The API C exports a set of interfaces, each of
which has two underlying implementations: one using API
A and one using B.

Consider the example in Figure 1. Supposing that Fig-
ure 1(a) is the original program, Figure 1(b) is the result
of shallow-adapting the original program to use the Ar-
rayList/Iterator API in place of Vector/Enumeration,
where the corresponding changes are highlighted by differ-
ent colors and bounding boxes. That is, the result of shallow
adaptation is a copy of the program where references to one
API have been replaced with references to an alternative
API. Figure 1(c-f) is instead the result of deep-adapting the
original to be able to use either API. Figure 1(d) is a new
API that abstracts the subsets of both Vector/Enumeration
and ArrayList/Iterator that are used by the program, and
(e) and (f) are its two implementations. Figure 1(c) is the
modification of the original that uses this new API. The re-
sult of deep adaptation is then creating the new API and its
implementations, and then retrofitting the original program
to use the new API.

The tradeoffs between shallow and deep adaptation are
similar to the tradeoffs between code duplication and ab-
straction: shallow adaptation tends to be more straightfor-
ward to write but harder to maintain, whereas deep adapta-
tion tends to be more costly to write but easier to maintain.
The ownership model of the code is, again, material: deep
adaptation is often infeasible—a common such situation is
when the original code is on a critical path for another team.

Shallow adaptation is more straightforward to write be-
cause it changes a duplicated subset of the program, not
touching and therefore not breaking any of the existing,
trusted code. It is, however, harder to maintain: future
additions of features, bug fixes, and tests to one copy may
or may not have analogues in the other. Lacking tool sup-
port, developers can easily forget to update the copies syn-
chronously.

Deep adaptation is easier to maintain because it clarifies
the separation between API-specific code and client code:
the differences are clearly delimited and tucked away from
the client program, and there’s only one copy of the shared
code. Some concern with synchronous maintenance remains,
but is reduced to the clearly delimited differences. In Fig-
ure 1(e-f), the method bodies hide only the differences be-
tween the two APIs. If a method in EnumIter changes, there
is still the question of whether an analogous change should
be made to IterIter.

Deep adaptation is more difficult to implement. (Recall
that the situation we address is when there is already exist-
ing code for which a developer wants to create a variant. In
developing from scratch, deep adaptation is more attractive
from both an abstraction and a cost point of view.) First,
the programmer must design a new API C'. In general, if the
program uses n types in API A, the programmer may have
to create n new interfaces (or abstract classes) and 2 xn new
classes implementing those interfaces. In our example, we
created two interfaces and four implementations. Second,
the programmer must adapt the client program to use the
new API C, changing possibly well-tested and trusted code
in the process.

Finally, both shallow and deep adaptation can prevent
the program from compiling for extended periods of time.
Specifically, while replacing uses of an API with uses of an-
other API — for example, consider the transition from Fig-

M::= 0 (blank mapping)
|1 T(F){B} (replacement)

T (F){B}]
| M; M (list of replacements)
F::=90 | F, T x (formals)

B € Java method bodies
T € Java types
x € Java identifiers

Figure 2: Abstract syntax of the mapping.

ure 1(a) to Figure 1(c) — when one declaration is changed
from A to C, the program may break arbitrarily badly. The
program is likely to not compile until the programmer com-
pletes the whole translation.

3. THE MAPPING

Underlying our approach is the observation that in the
process of manual adaptation — either shallow or deep —

the programmer implicitly specifies code-level correspondences

between the APIs. For example, the programmer replaces
of type Enumeration with type Iterator and of Enumera-
tion.nextElement () with Iterator. next().

With twinning, the developer writes these differences sep-
arately, in the form of a mapping whose entries specify when
two different code snippets correspond to one another. From
the mapping, we can automate key aspects of both shallow
and deep adaptation. The mapping that helps us generate
shallow and deep adapters for the code in Figure 1(a) is
shown in Figure 3.

When designing the mapping representation, we balanced
three inter-related principles:

1. Fase of use. The mapping language should resemble
the programming language itself as closely as possible.

2. Generality. The mapping representation should allow
a reasonable set of API-to-API mappings to be ex-
pressed.

3. Tool utility. Mappings should be easy to leverage by
matching algorithms and other analyses.

As these principles stand in tension, our initial design rep-
resents a sweet spot that addressed each of them to a rea-
sonable extent.

Figure 2 shows the abstract syntax of the mapping, which
we restricted, for now, to the specification of single replace-
ments (e.g., relating only two APIs). A mapping M is a
(possibly empty) list of replacements. A replacement

[Ty CFy) {B:}
To (F2) { B2 }1]

consists of two nameless procedures, each of which has a
return type T, a list of formals F, and a body B. The replace-
ment specifies that Ty is related to Tz, that the list of formals
F1 is point-wise related to the list of formals Fo, and that
B; is related to B2. Replacements are akin to the entries of
a logical relation, which relates programs that take related
inputs to related outputs. In the rest of the paper, we refer
to the domain and range of the mapping in the intuitive
sense: above, the snippet B; is in the domain and Bz in the
range of the mapping.

[Vector () { return new Vector(); }
ArrayList () { return new ArrayList(); }

[Enumeration (Vector v) { return v.elements(); }
Iterator (ArrayList a) { return a.iterator(); }

[boolean (Enumeration e) { return e.hasMoreElements();
boolean (Iterator i) { return i.hasNext(); }

[Object (Enumeration e) { return e.nextElement(); }
Object (Iterator i) { return i.next(); }

Figure 3: Mapping for Figure 1.

When applying the mapping to a program (see Section 4),
occurrences of By are replaced by occurrences of Ba. The
purpose of the return type and the list of formals is two-
fold. First, they are used in type-checking the mapping.
Therefore, replacements must be closed programs in which
all free variables in B are closed by F. Second, they can be
used by mapping-based transformations. When applying a
mapping to a program, for example, type matching allows
identification of code to translate. Otherwise, x.foo() and
y.foo() would match despite the types of x and y being
different.

A well-formed replacement is type-correct and its argu-
ment lists are in pointwise correspondence. That is, the
argument lists of the replacee and the replacer are equal in
length and the ith argument in one list corresponds to the
ith argument in the other. For API alternatives, this re-
striction means that we do not generally handle APIs where
the functionality of one type in one API is spread out over
the functionality of two or more types in the other. This re-
striction simplifies our algorithms significantly, and we have
yet to find real and useful examples where removing it is
absolutely necessary.

Figure 3 shows the mapping that handles the example
in Figure 1. The mapping syntax does not mention the
names used by the analysis that generates the adapters in
Figure 1(d-f): Seq, Iter, getIter, hasMore, and getNext.
Names can easily be incorporated by (a) attaching a name to
each replacement and (b) adding a syntactic form that maps
two related type names to a new name, e.g. name Seq {Ar-
rayList, Vector}. Alternatively, names could potentially
be automatically-generated using a heuristic algorithm that
yields readable names for corresponding blocks and corre-
sponding types.

We believe that this representation approximates our de-
sign principles. It is natural to use: programmers specify
correspondences as pairs of Java methods. In particular,
they can copy and paste snippets from the program and
then specify their replacements. It is general: it allows code
correspondences to be defined as pairs of method bodies. It
is useful: we defined shallow and deep adaptation transfor-
mations based on it.

4. SHALLOW ADAPTATION

A program transformation

| ShallowAdapt(P,M) = P’ |

generates a variant program P’ from a program P and the
mapping M. The transformation ShallowAdapt walks the pro-
gram’s abstract syntax tree (AST) and attempts to apply
each replacement to each node. When encountering a block,

]

}

the algorithm walks over the block’s statements, matching
every suffix of the block, allowing sequences of statements
to be replaced.

We first compute a type-mapping that gathers related
type pairs:

TypeMapping(P) = 0
TypeMapping ([T, (T1 x1,..
T, (T7 yi,..
= { (T,,T}), (T:1,TD),
TypeMapping (M;M’)
= TypeMapping(M) U TypeMapping(M’)

»Tn %) {B }
Th yn) { B2 3D
vy (T, Th)

For each replacement, the return types and the types of the
arguments are mapped together according to their positions
in the argument list. For example:

[Enumeration (Vector v) { return v.elements(); }
Iterator (ArraylList a) { return a.iterator(); }]

After computing TypeMapping (M), Vector maps to ArrayList
and Enumeration to Iterator. An additional check verifies
that the pairs form a function. That is, if Vector maps to
ArrayList, then Vector cannot map to anything else.
When walking the AST, ShallowAdapt replaces each men-
tion of type T (in fields, formals, and locals) with its corre-
sponding type in the type mapping, and each matched code
snippet with its replacement. The transformation does not
track variable names; because the replacements have 1-1 cor-
respondences in their argument lists, we simply re-purpose
the variable names used by the expression to be replaced.
For example, given the replacement above, the code
Enumeration elements = objects.elements();
is translated into
Iterator elements = objects.iterator();
In general, the way we drop the replacement code into the
program is by placing it in a new scope (surrounding it by
brackets) and rewriting return statements as assignments
into the variable expecting the result of the snippet. In the
common case, where a replacement is a single expression, we
can replace the code in line, omitting scopes.
ShallowAdapt does not verify that the mapping addresses
all the desired replacement sites. However, if a type-changing
translation (as is the case with API-to-API mappings) misses
a code snippet, the resulting program is extremely unlikely
to type-check, quickly guiding the programmer toward the
problem spot, after which the programmer can opt to change
the program (if possible) or expand the mapping to account
for the missing replacement.

4.1 Matching

The matching algorithm attempts to determine whether
a replacement block B is equivalent to a code snippet B’ re-
siding within the program. Our proof-of-concept implemen-
tation performs a literal comparison on the abstract syntax
of B and B’ with the following exceptions:

e Types are checked. For example, x.z() matches y.z()
only if the type of x equals the type of y.

e Identifier names are ignored. For example, x.y(p)
matches z.y(q).

e Occurrences of the return keyword in replacements are
ignored in the match. For example, {return x.foo();}
matches x.foo().

The matching algorithm does not use any data- or control-
flow information to handle more precise matches. Therefore,
two snippets A;B; and A;C;B; are not found equivalent if C
has no consequence on the behavior of B. Our simple algo-
rithm works well for our purposes so far, mostly because
replacements are small and easy to match. As discussed in
Section 7, it is often possible to get around limitations in
the matching algorithm by adjusting the mapping. Nothing
in our approach restricts the matching algorithm, however,
and much more powerful matchers can be plugged in.

S. DEEP ADAPTATION

Deep adaptation is captured by a related transformation

| DeepAdapt(P,M) = P’, A, I;, I

that takes a program P and a mapping M and yields

e A: a set of abstract classes and interfaces, forming an
API whose purpose is to abstract away the differences
contained in the mapping M.

e P’: a modification of P that calls into the API A wher-
ever P contains code that is in the domain of M.

e I;, I: implementations of the API A. I; hides the
implementation details of the code in the domain of
the mapping and I, the details of code in its range.

To generate program P’ we will create a mapping M’ that
specifies how the domain of M corresponds to the new APT A.
Then, P’ = ShallowAdapt(P,M’). To generate API A and its
implementations, we will compute a correspondence that as-
sociates each pair of related types (as computed by TypeMap-
ping in the previous section) with a set of replacements—a
subset of the mapping M. A pair of related types represents a
type in the new API A and its associated replacements rep-
resent its methods. Each replacement has two bodies: one
body for each of the method’s implementations.
We assume functions

ApiTypeName : TXT — String
ImplTypeName : T — String
MethodName : R — String

ApiTypeName assigns names to pairs of corresponding types.
ImplTypeName assigns implementation-specific names to types.
MethodName assigns names to replacements, which are ranged
over by R. Recalling Figure 1,
ApiTypeName (Vector,ArraylList) = "Seq"
ImplTypeName (Vector) = "VectorSeq"
MethodName (r) = "getIter"

where r is the second replacement in Figure 3. That is,
the name "getIter" names both underlying calls to Vec-
tor.elements() and ArrayList.iterator().

5.1 Generating the API

First, we sketch how to compute the mapping that as-
sociates a pair of related types to a corresponding list of
replacements:

RMap(Q,T,T’) = 0

RMap(R,T,T?)

= if IsConstr(R,T,T’) then { C(R) }
else if IsMethod(R,T,T’) then { M(R) }
else 0
RMap(M;M’,T,T’) = RMap(M,T,T’) U RMap(M’,T,T’)

Given a mapping M and a pair of corresponding types T and
T’, the algorithm computes a set of replacements, where
each replacement R is tagged either as a constructor C(R)
or a method M(R). The check IsConstr returns true if R’s
return types are T and T’, respectively, and at least one
of the returned expressions is a new invocation. IsMethod
returns true if T is the first argument in the domain of R and
T’ is the first argument in its range.

The algorithm for generating the new API A is as follows:

EmitApi(M) = TM := TypeMapping(M);
for (T,T’) in TM
RM := RMap(M,T,T’);
Emit "interface" ApiName(T,T’)
"{" EmitApiSigs(RM) "}"
That is, for each pair of related types, we emit a new in-
terface whose name is given by ApiTypeName(T,T’). Emi-
tApiSigs generates (only method) signatures using the fol-
lowing function, which uses ApiTypeName to generate names
for related type pairs, MethodName to generate method names,
and NewName to generate argument names:

EmitSig([T,(T1 x1,...,Tn x») { B }
T (T} y1s---sTh yn) { B> } 1 as R)
= Emit ApiTypeName(T,,T,) MethodName (R)
"(" ApiTypeName(T2,T5) NewName(),
ApiTypeName(T,,T,) NewName() ")" ";"

The argument list starts at index 2, because this is denoted
by index 1 and will be held in a class field in the generated
implementations.

5.2 Generating the Implementations

The algorithm for generating implementations is similar
to EmitApi, except it emits a class with constructors and a
field containing the encapsulated object. The algorithm is
as follows:

EmitImpl(n,M) =
TM := TypeMapping(M);
for (T,T’) as TP in TM
RM := RMap(M,T,T’);
FName := NewName();
Emit "class" ImplTypeName (sel, (TP))
"implements" ApiTypeName(T,T’) "{"
sel, (TP) FName ";" // field declaration
EmitMethods (n,RM,FName) "}"

EmitImpl takes a number n and a mapping M and emits a
set of implementations, one for each type pair computed
by TypeMapping(M). The number n is a selector index into
a pair, such that sel;(T,T’) = T and sel2(T,T’) = T°’.
EmitImpl(1,M) thus emits a set of implementations for the
domain of the mapping and EmitImpl(2,M) emits a set of
implementations for its range.

The algorithm EmitMethods uses the function EmitSig to
generate method signatures and a different function to emit
constructor signatures. The latter is similar to EmitSig,
except it uses ImplTypeName to generate the constructor re-
turn type, and it doesn’t invoke MethodName. In addition,
the class is given a constructor that takes a single argument
of the type it encapsulates, and its body simply sets the
internal field to the value of the argument.

When generating constructor bodies, every "return e;"
statement is replaced with "this.field = e;" When gen-
erating method bodies, if the method’s return type is in

the type mapping — that is, if the return type is given by
ApiTypeName (T,T’) — then every "return e;" statement
is replaced with

"return new" ImplTypeName(sel,(T,T’)) "(e);"

It wraps the return value with the implementation-specific
class that implements the ApiTypeName(T,T’) interface.

5.3 Generating the New Program

Finally, we show how we generate the new program P’
that uses the newly generated API A. The key insight here
is that we already have a transformation that allows us to
change a program to use new APIs: ShallowAdapt. Our
task is then to create a new mapping M’ that specifies the
correspondences between the domain of the original map-
ping and the new API A, and then we can generate P’ by
running ShallowAdapt (P,M’).

The following is a sketch of the algorithm that computes
the new mapping:

NewMapping () = 0
NewMapping ([T, (T1 x1,...,Tn x,) { B %
T, (T} y1,...,Tn yn) { B’ }] as R) =

Ret := if T, == "void" then "" else "return";

Body :=

if IsConstr(R) then
{ "return" "new" ImplTypeName(T,)

RGNS SO L
else { Ret x; "." MethodName (R)
" xz,.xe)
return
[TT(Tl X1,...,Tn Xn) { B }

ApiTypeName(T,,T.)
(ApiTypeName(T1,T}) x1,.
Body]

NewMapping (M;M’) = NewMapping(M) ; NewMapping(M’)

.., ApiTypeName (T, ,T,) xXn)

If the translated replacement denotes a constructor, then
the generated body is a new expression, instantiating one of
the underlying implementations with the given arguments.
In our translation, we always pick the implementation cor-
responding to the domain of the original mapping M. This
way, the generated program P’ should behave equivalently
to P. The programmer has the freedom to change these in-
stantiation sites to use alternative implementations.

If the translated replacement denotes a method, then the
generated body is a method call (in API &) on the first ar-
gument of the replacement, with the rest of the replacement
arguments passed as arguments to the method.

Deep adaptation can then be defined as follows:

DeepAdapt (P,M) =
M’ := NewMapping(M);
return (ShallowAdapt(P,M’), EmitApi(M),
EmitImpl(1,M), EmitImpl(2,M));

Notice that deep adaptation is essentially shallow adapta-
tion, with the extra API generation step in the middle.

6. HANDLING EXCEPTIONS

One of the biggest hurdles we encountered when designing
the representation of the mapping and its associated pro-
gram transformations was suitable handling of try/catch
blocks. The basic issue is that two related code blocks may
not only throw different exceptions, but these sets of excep-
tions are often asymmetric. The 1-1 mapping restriction we

try {
dom = reader.read("employees.xml");
} | catch (DocumentException e) {

[void (DocumentException e)

{ e.printStackTrace(); }
void (SAXException e)

{ e.printStackTrace(); }

try {
dom = db.parse("employees.xml");
l catch(SAXException e) {
System.out.println("Parse error");

System.out.println("Parse error");
e.printStackTrace();

} [

{ e.printStackTrace(); }
void (IOException e)
' { e.printStackTrace(); }

e.printStackTrace();
} icatch(IOException'e) { =~~~ " "~ '
—p'System.out.println("Parse error")ﬁ
:e.printStackTrace();

— oo
-~

Figure 4: Using overlapping replacements to generate catch blocks for unevenly-mapped exceptions.

place on non-exception types would therefore be an imprac-
tical restriction on exception matching.

To handle exceptions that are thrown from a method (and
hence are listed in the throws clause), we can simply com-
pute the exception set of the method body after the trans-
lation has been applied, and place it in the throws clause.

To handle exceptions that are caught, we allow the map-
ping to contain overlapping replacements at exception types.
Figure 4 shows how we map a code snippet that uses the
Dom4J XML processing API to corresponding code that
uses the Crimson XML API. In this example, a call to
SAXReader.read is mapped to a call to DocumentBuilder.
parse. SAXReader.read throws one exception: DocumentEx—
ception. DocumentBuilder.parse throws two exceptions:
SAXException and IOException. The mapping entries in
the middle of the figure overlap, mapping DocumentExcep-
tion to the exceptions SAXException and IOException and
specifying how it relates to each.

When translating try/catch statements, we need to know
which catch blocks to translate and how, and which are
extraneous and need to be deleted. We compute the try
block’s exception sets pre- and post-translation, and then
consult the mapping to determine how exceptions in the
two sets map together, and therefore which exceptions cor-
respond to the statement’s catch blocks. We process catch
blocks as follows:

e [f a catch block’s exception does not have a correspon-
dence in the mapping, we delete the block.

e If several catch blocks correspond to one exception,
we pick the first (as listed in the program) and delete
the rest.

e If one catch block corresponds to n exceptions, we
replicate the block n times.

We then translate each block using its corresponding map-
ping entry. Figure 4, going from left to right, shows the
catch block being replicated, and each replica being trans-
lated in the context of its corresponding mapping entry. If
we were to go from right to left, we would have two catch
blocks with only one corresponding exception, in which case
we would delete the second block and translate the first.

In the generation of deep adapters, we compute exception
sets directly from the mapping, and bundle them into unified
exceptions. For the example above, we create the following
exception classes:

class ParseException extends Exception { }

class Dom4JParseException extends ParseException {
Dom4JParseException(DocumentException e) { ... } }

class CrimsonParseException extends ParseException {
CrimsonParseException(SAXException e¢) { ... }
CrimsonParseException(I0Exception e) { ... } }

Inside each implementation, when SAXReader.read is called,
we wrap it in a try block whose catch clauses re-throw the
wrapped exceptions:

IDocument parse(String s) throws ParseException {
try {
return new Dom4JDocument (this.reader.read(s)); }
catch (DocumentException e) {
throw new Dom4JParseException(e); } }

As in previous sections, a function that assigns names to
related exception sets is assumed.

7. EXPERIENCE

We implemented a prototype in approximately 2,500 lines
of Java code as an extension to the Cornell Polyglot source-
to-source translation framework.! We experimented with
our prototype in two separate cases. In the first case, we
used it to adapt a set of small programs using the Crimson
XML parsing API to use the Dom4J API instead. In the
second case, we adapted a Twitter client to use the Facebook
APT instead.

The prototype allowed an iterative approach to defining
the mappings. We inspected the code; identified a block
of code to be translated; wrote the corresponding mapping
entry; applied the mapping to the program; tried to compile
the resulting program; and relied on type errors to identify
the next snippet of code to address in the mapping. The
mappings, in both cases, were less than twenty entries long.

7.1 Crimson vs. Dom4]J

Using twinning, we specified correspondences between the
DOM-style subsets of the Crimson and Dom4J XML pars-
ing APIs. DOM-style XML processing retrieves an abstract
syntax tree (DOM) from a parser and then traverses the
tree, processing nodes.?

We experimented with twinning in the context of several
Crimson-based example programs we found on the internet,
plus the log4j logging API (1.2.14), which uses Crimson to
process configuration files stored in XML format.

With respect to our example programs, we were able to
express all the correspondences, and compile and run the re-
sulting programs without manual modifications to the orig-
inal source. Most entries are straightforward. The following
entry, for example, encodes looking up an element’s children,
given that they have a particular name:

"http:/ /www.cs.cornell.edu/projects/polyglot

23AX-style parsing applies client-specified processing call-
backs on the fly. As we discuss in Section 9, mapping a
traversal-style parser to a callback-style one is currently out-
side of the range of twinning.

[NodeList (org.w3c.dom.Element ele, String name)
return ele.getElementsByTagName (name) ;
List (org.dom4j.Element e, String n)
return e.elements(n);]

Some entries required more care. Consider this program

fragment:

DocumentBuilderFactory dbf
= DocumentBuilderFactory.newInstance();
try { DocumentBuilder db
= dbf.newDocumentBuilder(); ... }

The Crimson API retrieves a parser from a factory object
(above), whereas the Dom4J API retrieves it directly by in-
voking a constructor, called SAXReader.® One sensible choice
may be to write a mapping entry as follows:

[DocumentBuilder () {
DocumentBuilderFactory f
= DocumentBuilderFactory.newInstance();
return f.newDocumentBuilder(); }
SAXReader () { return new SAXReader(); 1}]

When we first did the study, our matching algorithm was
not yet capable of matching across try-block boundaries.
We instead created a NoFactory empty class and handled
this case with the following two mapping entries:

[DocumentBuilderFactory () {
return DocumentBuilderFactory.newInstance(); }
NoFactory () { return new NoFactory(); 1}]
[DocumentBuilder (DocumentBuilderFactory f)
{ return f.newDocumentBuilder(); }
SAXReader (NoFactory f)
{ return new SAXReader(); }]

Such dummies may create some confusion when reading the
output code, but in terms of runtime impact, they will al-
most surely be eliminated by a modern optimizing compiler.
Use of dummies can be reduced by an improved matching
algorithm.

When generating deep adapters, we had to adjust one
entry of the mapping for both translations to work properly.
The original entry was as follows:

[Object (NodeList 1, int i) { return l.item(i); }
Object (List 1, int i) { return 1.get(i); } 1

Shallow adaptation works fine with this entry; post-translation,
the Object return values are eventually cast to org.dom4j.
Element in the program. When generating deep adapters,
however, we cannot cast these return values to the abstract
element type generated by our deep adaptation algorithm.
We therefore had to rewrite the entry as follows:

[org.w3c.dom.Element (NodeList 1, int i)
return (org.w3c.dom.Element)l.item(i);
org.dom4j.Element (List 1, int i)
return (org.dom4j.Element)l.get(i); 1

The adapter generation algorithm then generates proper method
bodies, using the extra type information to encapsulate the
return value into its corresponding implementation. On the
Dom4J side, the algorithm generates the following method:

33AXReader is a somewhat confusing name, in this context,
for a real DOM-style parser.

Tweset,
Update Facebook Status

Tweets,
Facebook Status Updates

Twitter followees,
Facebook friends

EN

vig

pE.. | IR _lin_na 18:2n_nnina ta almgnis far f faw daur

m 4‘# Update

28-Au0-09 12:26: Marik Nita humpin donlittle and ha

el

Blak Michae a

|
ceNuooE T

Alin

re parl

Figure 5: A partial view of SimpleTwitter and a mod-
ified version (in focus) that uses the Facebook API.

IElement getItem(int i) {
return new Dom4JElement (
(org.dom4j.Element)this.l.get(i)); }

where the enclosing class is Dom4JList, and Dom4JElement
extends IElement (all generated by our algorithm). The
field this.1 holds the original list.

Finally, we found that Crimson vs. Dom4J contain cor-
respondences that prevent the current implementation of
twinning from working in the opposite direction. For ex-
ample, Crimson’s NodeList and NamedNodeMap both map to
java.util.List. If the translations attempted to replace all
relevant List operations with NodeList or NamedNodeMap
operations, a malformed program would almost surely be
generated.

7.2 Twitter vs. Facebook

We wrote a mapping that captures a set of modifications
to SimpleTwitter, a twitter4j-based Twitter client, to use
the Facebook API instead. Although Facebook and Twitter
are services with different overall purpose and functionality,
they do have similar subsets. SimpleTwitter displays the
people you are following and their lists of tweets, and al-
lows you to update your status, send direct messages, and
search your followees’ tweets. We picked this setup precisely
because we wanted to apply twinning to APIs that have at
least superficial differences, but may turn out to share deep
structural similarities. A name-matching heuristic, for ex-
ample, would likely fail when applied to these two APIs,
because they have almost entirely different nomenclatures.
Being able to map these two APIs together means we can
reuse the vast majority of a graphical user interface that was
built for an entirely different purpose, while writing only a
tiny amount of GUI-related code.

Without inspecting the underlying APIs or the source
code, we conjectured that we could change SimpleTwitter
so that most or all of its functions were Facebook-based.
That is, it should display your Facebook friends and their
status updates, allow you to update your Facebook status,
search friends’ status updates, and send them private emails.

Figure 5 shows partial views of SimpleTwitter and Sim-
pleTwitter with our mapping applied. The original list of
Twitter followees is replaced with a list of Facebook friends.
The list of tweets is replaced with a list of Facebook status
updates, and updating the Twitter status is replaced with
updating the Facebook status.

We used the Facebook API £b4j, the only Java Facebook
API we found that made desktop integration fairly easy. We
made a simple modification to £b4j to introduce a feature
that had been present in the Facebook API but not yet rolled
into £b4j: a method call that returns a user’s list of status
updates. The information was already present in the under-
lying XML schema; we simply enabled access to it through
the £b4j interface. Because our version of Polyglot does not
support generics, we also manually modified SimpleTwit-
ter to remove the use of generics. We only deleted generics
annotations and placed type casts where needed.

We systematically ported a subset of SimpleTwitter to
use fb4j. An example of a simple mapping entry, specifying
how to set the status in both APIs, is as follows:

[void (Twitter tw, String s)
{ tw.updateStatus(s); }
void (FacebookSession fb, String s)
{ fb.setStatus(s); }]

In the process, we made use of empty dummy classes to re-
place whole panels in the graphical user interface with blank
panels. We found this useful both for omitting features
that didn’t have correspondences (such as Twitter’s “trends”
listing), and to compile and run the resulting code mid-
translation. For example, we compiled and ran a version of
the program that had only translated tweets into Facebook
status updates, by replacing everything else with blank pan-
els. Dummy replacements were systematically translated
into their real analogues. An example dummy replacement
is as follows:

[TrendsPanel (Twitter t)
{ return new TrendsPanel(t); }
DummyTrendsPanel (FacebookSession sess)
{ return new DummyTrendsPanel(); }]

twitter4j uses Java arrays for most of its object lists
(such as the list of tweets), whereas £b4j uses the List in-
terface. When writing the mapping entries, we made use of
Arrays.asList to convert arrays into lists. Here’s one such
example:

[List (Twitter tw) { return tw.getUserTimeline(); }
List (FacebookSession fb)
{ return Arrays.asList(fb.getStatuses()); }]

In creating the mapping we had to handle a call to Twit-
ter.getFollowing() and its translation to Facebook’s get-
Friends () method. The Facebook side of the mapping entry
contains a lengthy computation over the Facebook API, in-
cluding some exception handling, followed by a conversion
from array to list. To handle this, we created a separate
FbUtil class (including the method FButil.getFriends())
and deferred some translations to calls into this class. A
better matching algorithm would avoid the need for auxil-
iary mappings in cases like these. However, we require the
auxiliary class because our basic matching algorithm fails
silently when attempting to replace a call that can occur in
the middle of an expression, with a multi-statement block.

Finally, some mapping entries were resolutely program-
specific. For example, one mapping entry replaces the Sim-
pleTwitter login sequence — which prompts the user with
a password dialog and initializes the main session object —
with a Facebook analogue that involves no password dialog,
but rather a background request to the Facebook servers.

8. DISCUSSION

To what degree does our approach to twinning — based
on the use of mappings to drive both shallow and deep adap-
tation — address the problems of maintaining the common
parts of program variants without compromising the abil-
ity to modify the distinct parts, especially in the context of
supporting alternative APIs?

On the one hand, the jury must still be out on this ques-
tion: our prototype is useful but limited, and our experience
is illuminating but limited. On the other hand, the promise
to improve over the current approach of handling these is-
sues manually is clear. The mechanism of writing a map-
ping and using one of the transformation engines over time is
likely to reduce developer effort. Furthermore, the benefits
of explicitly representing the mapping — usually kept in the
developer’s head, if at all — can imaginably have other ben-
efits such as helping the developer crystallize the intended
relationship between the variants.

At its heart, twinning offers a way to separate a program’s
logic from ways in which it can depend on related APIs.
This is highlighted especially well by the Twitter-Facebook
example. The mappings clump together related code in the
form of replacements that are largely agnostic with respect
to the surrounding program structure. For example, the de-
veloper of SimpleTwitter can keep enhancing the UI, and
we can keep applying the mapping to subsequent versions,
to retrofit it into a Facebook client. For some changes to
related code, adjustments must be made to the mapping: in
other words, twinning attempts to separate the core compu-
tational concerns of the client from the relationship between
alternative implementations. The separation of the client
from an implementation is, of course, not new: it is the
definition, maintenance, and use of the explicit relationship
between alternative implementations that is new.

Defining the prototype and applying it to our examples
deepened our understanding of the issues surrounding twin-
ning in several dimensions, as well as helping us identify
some limitations. We learned to use auxiliary and dummy
classes to produce working mappings. In some cases, these
auxiliary classes helped us get around limitations in the
matching algorithm. In others, they helped us specify a
working mapping where at first glance, the APIs did not
appear to be in direct correspondence. Also, when map-
pings are complex, auxiliary code structures can be useful
simply to make the mappings easier to understand.

Twinning works best when the differences are small. In
some cases, the overall functions provided by two APIs can
be similar, while their structure can be vastly different. One
example is traversal- vs. callback-style parsing, where there
is no straightforward structural correspondence between the
parsers. Currently, we consider such API pairs to be outside
the scope of this work.

Our matching algorithm requires type equality. To match
all calls to a a method T.m() on both T and subtypes of T,
we would have to write an entry for each subtype. It should
be reasonably simple to extend the twinning mechanisms to

handle subtyping without the developer explicitly reasoning
about the type hierarchy.

The 1-1 type mapping restriction makes our algorithms
simple to understand and implement — in particular, we
do not introduce new instantiation sites, we only replace
existing ones — but may prevent some mappings from being
expressed or cause them to be unreasonably complex.

Twinning does not yet allow expressing contextual infor-
mation; for example, “match T.m() where T is the result of
a call to foo().” It instead greedily matches all uses of T,
which prevents writing mappings that translate only some
uses of a type, but not others. In its current form, twin-
ning is particularly well-suited for API-to-API translations,
which usually involve fully removing all the uses of a type;
though, as discussed in Section 7.1, this is not always the
case. Loosening these restrictions is left for future work.

9. RELATED WORK

Previous work relating to our ideas can be split in three
main categories: work that manages related differences be-
tween two programs, work that manages similarities, and
languages that facilitate domain-specific program transfor-
mations.

Managing Related Differences. This vein of work goes
back to David Parnas and his work on program families [20].
Parnas advocated techniques for managing and evolving sys-
tems as sets of related programs (families). Twinning can
be viewed as a technique for managing families, by explicitly
tracking the differences among members, in the domain of
alternative APIs.

Aspect-Oriented Programming (AOP) [11] and its popu-
lar Java implementation AspectJ [12] were designed for han-
dling concerns that cut across a program’s usual abstraction
mechanisms (classes, methods, etc.). With AOP, the pro-
grammer specifies a set of aspects separately from the pro-
gram and aspects are woven into the code at the specified
locations. AOP is a much more general paradigm than what
we presented in this paper but we find it to be not partic-
ularly well-suited for API-to-API transitions. In particular
AOP does not directly support (a) replacing sequences of
statements and (b) replacing an expression with an expres-
sion of a different type. It is possible that such replacements
can be encoded in AspectJ via workarounds.

ARCUM |[21] is a system not unlike ours, where program-
mers can specify differences between two implementations
in a mapping, and ARCUM generates new implementations
from existing ones using the mapping. ARCUM’s mapping
language is more complex than ours, in two ways. First,
the programmer organizes the mapping as a class hierarchy,
where related code snippets implement the same interface.
Second, the change description language is lower-level, spec-
ifying how to take apart and build ASTs. We believe that
a class of shallow adaptations can be specified within AR-
CUM, although it is unclear how one would handle uneven
mappings of exceptions without specifying the full AST-level
details for how a particular try block maps to another. AR-
CUM doesn’t support generation of deep adapters.

The work of Balaban et al. on class migration [1] targets
migration of large code bases using outdated Java APIs to
use their modern replacements. The system uses a type sys-
tem and constraint solver to efficiently and precisely identify
replacement sites in the face of subtle effects such as syn-
chronization. Their translation therefore offers more precise

guarantees than ours. To our understanding, the mapping
language is restricted to relating API symbols that are in 1-1
correspondence in their return and argument types. While
our mapping entries have a 1-1 restriction, we don’t put re-
strictions on how the underlying API symbols map together.
E.g., it could be that a sequence of three statements maps
to a sequence of two statements. Class migration doesn’t
handle exceptions: it halts if the replacement code throws
different exceptions than the replacee.

HULA [6] is a metaprogramming language that allows
writing changes to Haskell programs separately, and apply-
ing them to the program in a type-safe manner. Seman-
tic patches [18] extend the UNIX patch tool with semantic
information and can be used for collateral evolutions [19],
where one patch is applied to all the pertinent locations in
a source base. Dynamic software updating [16] computes a
patch from two versions of a program and can apply it to
the program at runtime, without restarting the system.

SemDiff [3], RefactoringCrawler [4], and CatchUp! [9] are
techniques that help the programmer retrofit a program us-
ing an outdated version of an API to use its new version.
SemDiff finds code that doesn’t compile and provides a list of
candidate replacements. RefactoringCrawler automatically
detects refactorings between two program versions. Thus, if
an API change was the result of a refactoring, the crawler
understands the structure of the refactoring and can use
it to port the client code. CatchUp! can record refactor-
ings on the API development side and replay them on the
client’s end to adjust client code to use the new API. Logical
Structural Deltas [14, 13] can be used to detect and under-
stand differences between two API versions and to change
the clients accordingly.

In our own prior work [17], we designed a small extension
to the C language that allows programmers to eliminate sub-
sets of the program that are used to handle alternative data
layouts (e.g., little- vs. big-endian) by using a declarative
mapping language to specify how one layout relates to an-
other. Then, the alternatives are automatically generated.

Libraries such as Mapstraction?, Apache Commons Log-
ging®, and Eclipse SWT® are thin abstraction layers pro-
viding unified interfaces to sets of alternative APIs in the
form of deep adapters. Mapstraction provides a unified
interface to several map services (Google, Yahoo, Open-
StreetMap, etc.), Commons Logging abstracts several log-
ging APIs, and SWT abstracts all the GUI toolkits to which
Eclipse is portable. One of our goals is to help developers
quickly retrieve such uniform interfaces by specifying the
differences among a set of APIs.

Managing Similarities. Projects such as Simultane-
ous Editing [15], Linked Editing [22], CloneTracker [5], and
CReN [10] focus on management of code clones: program
snippets with a high degree of syntactic similarity. To at
least some extent, these techniques also provide ways to
manage the differences between programs. If a change is
made to the similar regions of a set of clones, the change
is propagated to all the clones. If the change is made to a
difference, the change remains local.

Twinning can be seen as managing the differences between
certain types of code clones: program alternatives. In this

“http://www.mapstraction.com
®http://commons.apache.org/logging
Shttp://www.eclipse.org/swt

domain, twinning is complementary to all the systems listed
above and could potentially be used to enhance code clone
management. Twinning manages how the differences be-
tween clones map together, something the other systems do
not capture. With twinning, a change to a difference region
within a clone could be propagated to the other clones by
using the mapping to determine the analogous changes.

Domain-Specific Transformations. There are sev-
eral languages (e.g., SNOBOL [7], TXL [2], TAWK [8]),
both general-purpose and domain-specific, that allow pat-
tern matching over the structure of a program and can there-
fore be used to encode domain-specific program transforma-
tions. T'winning is related in that the mapping can be viewed
as a set of P — P’ pairs, where P is the pattern to match
and P’ is the program to drop in its place.

10. CONCLUSIONS AND FUTURE WORK

We investigated the problem of adapting programs to new
APIs because creating and maintaining program alternatives
is needlessly costly and difficult. We defined a simple tech-
nique called twinning to allow the programmer to specify a
set of code mappings between alternatives, rather than mak-
ing destructive program updates. We demonstrated how
twinning can be used to retrofit programs to use new APIs,
and in some cases, to customize those programs in a more
general fashion.

An avenue for future work (beyond those mentioned in
Section 8) is to devise a heuristic that generates candidate
mappings relating API A to API B (a) from a program P
using API A and (b) from APIs A and B. The algorithm
can extract all of P’s uses of A and attempt to match them
to sequences of calls in B. One challenge, when extracting
the uses of A from P, is to identify the smallest units of
replacement. For example, x.foo();x.bar(); may either
be a whole unit that maps to corresponding code in API B,
or x.foo() and x.bar () may be separate units, mapping to
separate units in B.

As shown in the Twitter vs. Facebook example, mappings
can be used to specify program-specific changes. We hypoth-
esize a change-based program representation as a successor
to twinning. The idea is that in addition to organizing pro-
grams as interfaces, classes, methods, etc., programmers can
further structure their code with mappings. Individual map-
pings can specify features that can be enabled or disabled
on demand. Mappings should also be composable, so that
one mapping can be specified with one or more mappings
as its base. This would simplify code-level management of
configurations and customizations and allow changes to be
specified without modifying the program, arguably reducing
the potential for introducing bugs.

11. REFERENCES

[1] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support
for class library migration. In Proc. OOPSLA, 2005.

[2] J. R. Cordy, C. D. Halpern, and E. Promislow. Txl: A
rapid prototyping system for programming language
dialects. Computer Languages, 16, 1991.

[3] B. Dagenais and M. P. Robillard. Recommending
adaptive changes for framework evolution. In Proc.
ICSE, 2008.

[4] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

components. In ECOOP ’06: European Conference on
Object Oriented Programming, 2006.

E. Duala-Ekoko and M. P. Robillard. Tracking code
clones in evolving software. In Proc. ICSE, 2007.

M. Erwig and D. Ren. A rule-based language for
programming software updates. SIGPLAN Not.,
37(12):88-97, 2002.

R. E. Griswold. The SNOBOL}, programming
language. Bell Telephone Laboratories, 1968.

W. G. Griswold, D. C. Atkinson, and C. McCurdy.
Fast, flexible syntactic pattern matching and
processing. In WPC ’96: International Workshop on
Program Comprehension, 1996.

J. Henkel and A. Diwan. Catchup!: capturing and
replaying refactorings to support api evolution. In
Proc. ICSE, 2005.

P. Jablonski and D. Hou. Cren: a tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the ide. In OOPSLA workshop on
eclipse technology eXchange, 2007.

G. Kiczales and E. Hilsdale. Aspect-oriented
programming. In ESEC/FSE, 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of aspect;j.
In ECOOP °01: European Conference on
Object-Oriented Programming, 2001.

M. Kim and D. Notkin. Discovering and representing
systematic code changes. In Proc. ICSE, 2009.

M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In Proc. ICSE, 2007.

R. C. Miller and B. A. Myers. Interactive
simultaneous editing of multiple text regions. In
USENIX Annual Technical Conference, 2002.

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for c. SIGPLAN
Not., 41(6):72-83, 2006.

M. Nita and D. Grossman. Automatic transformation
of bit-level C code to support multiple equivalent data
layouts. In International Conference on Compiler
Construction, 2008.

Y. Padioleau, R. R. Hansen, J. L. Lawall, and

G. Muller. Semantic patches for documenting and
automating collateral evolutions in linux device
drivers. In Proc. PLOS 06, page 10, 2006.

Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
linux device drivers. SIGOPS Oper. Syst. Rev.,
42(4):247-260, 2008.

D. L. Parnas. On the design and development of
program families. Software fundamentals: collected
papers by David L. Parnas, pages 193-213, 2001.

M. Shonle, W. G. Griswold, and S. Lerner. Beyond
refactoring: a framework for modular maintenance of
crosscutting design idioms. In ESEC/FSE, 2007.

M. Toomim, A. Begel, and S. L. Graham. Managing
duplicated code with linked editing. In IEEE
Symposium on Visual Languages - Human Centric
Computing, 2004.

